Geri Dön

Yadtürdeş dalga klavuzunda harmonik dalgalar

Harmonic waves in inhomogeneous waveguide

  1. Tez No: 39710
  2. Yazar: ABDUL HAYIR
  3. Danışmanlar: PROF.DR. İBRAHİM BAKIRTAŞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1994
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 74

Özet

ÖZET Bu çalışmada, iki boyutlu dalga yayılışının karşı düzlem durumunda, yadtürdeş dalga kılavuzundaki harmonik dalgalar incelenmiştir. Birinci bölümde konu ile ilgili genel tanımlamalar ve açıklamalar yapılmıştır. Temel hareket denkleminin kararlı çözümümü elde etmek üzere Uz(x,y,t) =

Özet (Çeviri)

SUMMARY HARMONIC WAVES İN İNHOMOGENEOUS WAVEGUIDE In this study, two dimensionals antiplane harmonic waves have been examined At first, the basic concepts and the governing equations of the problem have been given.For the case of antiplane shear, the equation of motion can be written as follows d(x,y)e-^ (5) After substituting this expression into equation (4) we come to the equation (6) for function 4>(x,y) d_ dx Kv) df dx d_ dy tiv) d£ dy + p(y)u>2 = 0 (6) To obtain a simpler form, we introduce a i^(x,y) function as fol lows {x,y) (v(y))* (7) After substituting this definition in equation (6) we obtain the follow ing differential equation for function ij)(x,y) V2V> + k2s(y)iP = 0 Here, V2 and ^l can ^e written as follows (8) V dx2 dy vnkl(y) = pjy)^ dy 1 (dn{y)\ 4/i(v) \ dy J dfi(y) dy (9) We considers an inhomogeneous layer given in fig.2 to be the region of our problem. fig.2:Examined inhomogeneous waveguide In this region the boundary conditions are defined as follows for y = 0 then ( ^dU* n for y = H then < \dU* n (10.1) (10.2) At first (J,(y) is assumed to be an arbitrary function of y. But this function will be restricted to be an analytical function of y. After this definition,the solution is assumed in the following form: vmi>(x,y) = X(x).Y(y) (11) Substituting (11) in (8),and we come -id2x ia2r.,2 X dx2 Y dy2 K(y,",k) (12) Both sides of this equation must have been equal to the same constant k2 for the existance of the equation (12). Then we come the equation (13) and (14) for X and Y functions with a new unknown constant k2 £ + **-<> (13) İL+(k',(y,u,)-l

Benzer Tezler