Uzay çubuk sistemlerde ikinci mertebe limit yük için yapı ağırlığını minimum yapan bir boyutlandırma yöntemi
A Minimum weight design method for materially and geometrically non-linear framed space structures
- Tez No: 39821
- Danışmanlar: PROF.DR. ERKAN ÖZER
- Tez Türü: Doktora
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1994
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 128
Özet
ÖZET Bu çalışmada, uzay çubuk sistemlerin ikinci mertebe limit yüke göre minimum ağırlıklı olarak boyutlandırılmaları için bir ardışık yaklaşım yöntemi geliştirilmiştir. Sekiz bölüm olarak sunulan bu çalışmanın birinci bölümünde konunun tanıtılması, konu ile ilgili çalışmaların gözden geçirilmesi, çalışmanın amacı ve kapsamı yer almaktadır. ikinci bölümde, çalışmada yapılan kabuller ve ardışık yaklaşım yönteminin esasları verilmiştir. Her adımı birbirini izleyen boyutlandırma ve sistem hesabı aşamalarından oluşan yöntemde, enkesit karakteristikleri arasındaki bağıntılar bir önceki adımın boyutlandırma aşamasından, ikinci mertebe limit yüke karşı gelen plastik kesit yerleri ile bu kesitlere ait akma vektörü doğrultuları ise bir önceki adımın sistem hesabı aşamasından alınmaktadır. Bu bölümde ayrıca, yaklaşık akma koşulu, çözümün sağlaması gereken koşullar ve kısıtlamalar ile minimum yapılması istenen ağırlık fonksiyonu ayrıntılı olarak açıklanmıştır. Üçüncü bölümde, ağırlık fonksiyonunun ve kısıtlamaların lineerleştirilmesi ile lineer programlama problemine dönüştürülen optimizasyon probleminin çÖzümündeki indirgeme ve değişken dönüşümü işlemleri, Simplex yönteminin bu problemin çözümüne uygulanması ve herhangi bir ardışık yaklaşım adımının boyutlandırma aşamasında izlenen yol açıklanmıştır. Dördüncü bölümde, uzay çubuk sistemlerde ikinci mertebe limit yükün hesabı için geliştirilen bir yük artımı yönteminin esasları ve ikinci mertebe limit yükün hesabında izlenen yol özetlenmiştir. Beşinci bölümde, yapı sistemlerinin, ikinci mertebe limit yüke göre ve göçme yüküne göre minimum ağırlıklı olarak boyutlandınlmalarında izlenen yol verilmiş, ayrıca, boyutlandırılan sistemde işletme yükleri altında sağlanması gereken koşullar açıklanmıştır. Altıncı bölüm, yöntemin sayısal uygulamaları için hazırlanan ve Fortran-77 programlama dilinde kodlanan bir bilgisayar programının ve programı oluşturan altprogramlann açıklanmasına ayırılmıştır. Yedinci bölümde, yöntemin sayısal uygulamaları için hazırlanan, bilgisayar programı kullanılarak çözülen üç örneğin sonuçları verilmiştir. Sekizinci bölümde, bu çalışmada elde edilen sonuçlar açıklanmış, Ek A ve Ek B de ise sırasıyla, kutu ve / kesitler için çıkarılan enkesit karakteristikleri arasındaki bağıntılar ve matris yerdeğiştirme yönteminde kullanılan eleman rijitlik matrisleri verilmiştir. XV
Özet (Çeviri)
SUMMARY A MINIMUM WEIGHT DESIGN METHOD FOR MATERIALLY AND GEOMETRICALLY NON-LINEAR FRAMED SPACE STRUCTURES The main objective of the structural engineering is to design structures which withstand external loads safely and at a minimum cost. During last decades, the developments in the optimization methods which attempt to find the most economical solutions to design problems by satisfying the required safety and rigidity constraints and minimizing the cost function as well as the developments in the non-linear analysis methods which aim to determine the real behavior of structures under external effects, give the structural engineer the opportunity to reach this objective. The structural systems made of ductile material demonstrate elastic-plastic behavior under increasing loads, i.e., the non-linear deformations are assumed to accumulate at certain sections which are defined as plastic sections while the remaining structure behaves linearly-elastic. As the loads reach a limiting value, either the complete structure or its part transforms into a mechanism or buckling failure occurs due to the lack of stability. The mechanism load is called as the first-order limit load and the buckling load is defined as the second-order limit load. The slender structural systems which demonstrate high ductility can be designed by equating the factored loads to the second-order limit load. The designed structure should also satisfy certain stress and displacement requirements under service loads. As the optimization problems gain great importance in the field of structural engineering, numerous research works have been carried out and various algorithms have been developed for solving these types of problems. These algorithms can be mainly classified as the optimality criteria approaches and the mathematical programming techniques. The objective of the mathematical programming techniques utilized for the Tninirmiin weight design of structural systems is to determine the design variables which minimize the objective function representing the cost of the structure and satisfy a set of constraints. The optimization problems in which all of the constraints and the objective function can be expressed linearly in terms of design variables are called as linear programming problems and those are expressed non-linearly in terms of design variables are called as non-linear programming problems. Cross-sectional properties of the members, displacements, internal force components, deformations etc. can be chosen as design variables. xvtIn the minimum weight design problems where the cost of the structure is assumed to be represented by the weight of material, the objective function can be expressed in terms of the cross-sectional characteristics. The equilibrium and compatibility equations, the yield conditions, the stress and displacement limitations, constructive requirements constitute the constraints of the problem. When the effect of geometrical changes on the equilibrium equations is neglected, the structure can be designed for the first-order limit load at which the structure transforms into a complete mechanism. The internal forces corresponding the mechanism load are determined through the equilibrium equations. Therefore, the minimum weight design problem can be transformed into a linear programming problem, provided that the objective function and the yield conditions are expressed by linear functions of cross-sectional properties. The structural systems for which the effect of geometrical changes on the equilibrium equations is significant, should be designed for the second- order limit load. Since the equilibrium equations, the yield conditions and the relationships between the cross-sectional properties are non-linear and since the second-order limit load is not equal to the mechanism load, the minimum weight design of geometrically and materially non-linear structural systems generally requires the formulation and solution of a non-linear programming methods. However, if the axial forces caused by the factored loads, the relationships between the cross-sectional properties and the locations and deformation vectors of plastic sections corresponding the second-order limit load are estimated and if the yield surface is idealized as composed of planes, the minimum weight design problem can be reduced to successive solutions of a linear programming problem. In this study, a method of successive approximations is developed for the minimum weight design of non-linear framed space structures. Each step of the optimization process is composed of design and analysis phases. At each design phase of the method, a linear programming technique may be applied for structural optimization. The proposed optimum design method is independent of the characteristics of the structure and can be applied to all types of framed structures which comply the following assumptions. a)Bernoulli-Navier hypothesis is valid. b) Members forming the structure are considered to be made of ideal elastic-plastic material. c)It is assumed that the non-linear deformations accumulate at certain sections which are defined as plastic sections and the remaining structure behaves linearly-elastic. This assumption corresponds to the plastic hinge concept applied to planar framed structures. xvnd) It is considered that the yield condition can be idealized by assuming the yield surface to be composed of planes. e)The second-order theory is applied. In this theory, the effect of geometrical changes on the equilibrium equations is considered while their effect on the compatibility equations is neglected. f) In the application of the second-order theory, the second-order effects caused by the torsional displacement and the local deformations within the cross-section are ignored. Hence, only the second-order effects due to the geometrical changes within the principal planes of the members are considered. g) Members forming the structure are straight, prismatic and the axial force is constant along the member. In case of existence of members which do not satisfy these conditions, they can be approximated by dividing them into smaller straight and prismatic segments with constant axial force. In the proposed method, equilibrium equations are linearized by estimating the axial forces caused by the factored loads and yield condition is linearized by assuming the yield surface is composed of planes. In each design phase, the relationships between the cross-sectional properties are taken from the previous design phase and the plastic section locations and the corresponding deformation vector directions are taken from the non linear analysis of the system designed in the previous step. When the design variables, the weight function and the plastic sections and corresponding deformation vectors are same or close enough in two successive steps, the computation is terminated and the minimum weight solution is obtained. Since the plastic deformation vector, is normal to the yield surface, the finite plastic deformations at a plastic section can be represented by a single parameter called as plastic deformation parameter. Utilizing the matrix displacement method and considering the plastic deformation parameters at plastic sections as structural variables along with the nodal displacement components, the equilibrium equations corresponding the second-order limit load can be written directly and systematically. These equilibrium equations also cover the geometrical compatibility conditions for the second-order limit load. The yield condition for members subjected to combined biaxial bending and axial force can be expressed in a general form, as in the following: K(Mz,My,N)
Benzer Tezler
- Betonarme yapı sistemlerinde ikinci mertebe limit yükün ve göçme güvenliliğinin belirlenmesi için bir yük artımı yöntemi
Başlık çevirisi yok
KONURALP GİRGİN
- Farklı deprem yönetmeliklerine göre boyutlandırılan betonarme yapı sistemlerinin lineer olmayan davranışlarının incelenmesi
Investigation of non-linear behavior of reinforced concrete structures designed according to various
MEHMET KÜRŞAT OĞUZHAN
- Mevcut betonarme bir binanın güçlendirme öncesi ve sonrası deprem güvenliğinin belirlenmesi
Başlık çevirisi yok
MERTER GÜRGÜN
Yüksek Lisans
Türkçe
1998
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİşletme Ana Bilim Dalı
PROF. DR. ERKAN ÖZER
- Çok katlı perdeli sistemlerin yatay yüklere göre sonlu elemanlarla çözümü
Analysis of multi stored and shear walled structural systems under the effect of horizontal loads by using the finite element model
AYŞEGÜL KANLI
Yüksek Lisans
Türkçe
2006
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF.DR. AHMET IŞIN SAYGUN
- Uzay çubuk sistemlerde ikinci mertebe limit yükün hesabı için bir yük artımı yöntemi
Determination of second-order limit load of framed space structures by a method of load increments
ERDAL İRTEM
Doktora
Türkçe
1991
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Ana Bilim Dalı
PROF.DR. ERKAN ÖZER