Geri Dön

Improved prediction methods for low complexity, high quality video coding

Başlık çevirisi mevcut değil.

  1. Tez No: 400769
  2. Yazar: KEMAL UĞUR
  3. Danışmanlar: PROF. MONCEF GABBOUJ
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: İngilizce
  9. Üniversite: Tampereen Teknillinen Yliopisto (Tampere University of Technology)
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 163

Özet

Özet yok.

Özet (Çeviri)

Video coders are an essential part of any digital video application, such as digital TV broadcasting or video conferencing as the bitrate of an uncompressed video signal is too high for any practical usage. The goal of all video coders is to maximize the video quality while minimizing the bitrate, with as low complexity as possible. This is achieved by exploiting different redundancies present in the video signal. One type of redundancy is present between different pictures captured either at different time instants from the same camera (temporal redundancy) or from different cameras at the same time instant (view redundancy). The focus of this thesis is to develop algorithms to exploit the redundancies between different pictures more effectively with the goals of improving coding efficiency of video coders and decreasing their implementation complexity. The first part of this thesis presents a detailed complexity analysis of motion compensated prediction part of the most recent H.264/AVC standard that is used to exploit the temporal redundancy. More specifically, the interpolation function of the standard is described in detail and its implementation complexity is analyzed. This part presents a novel algorithm to generate easy to decode bitstreams with high coding efficiency utilizing the flexibility of the H.264/AVC standard. The second part of this thesis discusses adaptive interpolation filtering (AIF) to improve the coding efficiency of video coders. In AIF, the coefficients of the interpolation filter are updated dynamically to compensate the time variant nature of the aliasing present in the video signal. In this part, firstly novel algorithms are presented to improve the coding efficiency of AIF schemes. This is achieved by making the filter structure and the filter symmetry more flexible so that the AIF tool becomes useful for a larger set of sequences exhibiting different statistical behavior and at different bitrates. Secondly, novel algorithms are presented to reduce both the encoding and decoding complexity of AIF schemes. This is done by using a novel structure that uses less number of taps than the state-of-art schemes, enabling an efficient implementation using 16-bit integer arithmetic. In addition, novel algorithms are developed to reduce the encoding complexity while maintaining the coding efficiency gain. The third and the final part of this thesis discusses three dimensional video coding, and specifically the Multiview Video Coding (MVC) extension of the H.264/AVC standard. MVC is a recent addition to the H.264/AVC family of video coding standards, to enable the emerging 3D video applications. The focus of this part is on the implementation complexity of MVC, paying special attention to parallel decoding of multiple views on different processors or cores. A novel algorithm is presented that encodes the views with certain restrictions so that the views could be decoded in parallel.

Benzer Tezler

  1. Computational aesthetics using machine learning for video game camera direction

    Video oyunu kamera yönetimi için makine ögrenmesi ile hesaplamalı estetik

    ALİ NACİ ERDEM

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Modelleme ve Simülasyon Ana Bilim Dalı

    PROF. DR. UĞUR HALICI

  2. Düşük bir hızlarında konuşma kodlama ve uygulamaları

    Low bit rate speech coding and applications

    TARIK AŞKIN

  3. Deep learning based road segmentation from multi-source and multi-scale data

    Çok kaynaklı ve çok ölçekli veriyle derin öğrenme tabanlı yol bölütlenmesi

    OZAN ÖZTÜRK

    Doktora

    İngilizce

    İngilizce

    2023

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. DURSUN ZAFER ŞEKER

  4. Nesneye yönelik sistemlerde kusurlu sınıfların öngörülmesi için makine öğrenmesi temelli bir yöntem oluşturulması

    Creating a machine learning based method for predicting defective classes in object oriented systems

    FİKRET AKTAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. FEZA BUZLUCA

  5. Novel centrality, topology and hierarchical-aware link prediction in dynamic networks

    Dinamik ağlarda merkezilik, topoloji ve hiyerarşik tabanlı bağlanti tahmini

    ABUBAKHARI SSERWADDA

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YUSUF YASLAN

    YRD. DOÇ. ALPER ÖZCAN