Geri Dön

Development of glass-ceramics from combination of industrial wastes with boron mining waste

Başlık çevirisi mevcut değil.

  1. Tez No: 400963
  2. Yazar: BUĞRA ÇİÇEK
  3. Danışmanlar: DR. ARTURO SALOMONI
  4. Tez Türü: Doktora
  5. Konular: Metalurji Mühendisliği, Metallurgical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2013
  8. Dil: İngilizce
  9. Üniversite: Alma Mater Studiorum Universita di Bologna
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 136

Özet

Özet yok.

Özet (Çeviri)

This thesis was aimed to develop efficient utilization methods for highly produced waste materials using glass-ceramic technology. Glass-ceramic materials feature a great potential for environmental clean-up, since they may combine waste stabilization and valorization. In present research, considering the main aim of the thesis, as environment friendly waste utilization, energy consumption was also noticed, in order support environment respecting production techniques. For this concern a controlled fast heating rate, ranging between 40ºC min-1 to 2 ºC min-1 was applied to studied waste mixtures. The borate mineral wastes obtained through boron mines and enrichment plants were selected to be the constant starting material in all performed studies. Borate mineral wastes contain high amount of B2O3, a very wellknown glass forming oxide with a large scale of application areas, also providing lower sintering temperatures. The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. Different proportions prepared according to the objected glass-ceramic ternary systems such as; B2O3–P2O5–SiO2 (borophospho- silicate) and SiO2-Al2O3-CaO (wollastonite). In order to determine cytotoxicty, cell toxicity analyses applied to some of the studied products, in order to see the effect of boron (a regular daily intake element) in glass structure. As a result, three different glass-ceramic articles obtained by using powder sintering method via individual sintering processes. Light weight micro porous glass-ceramic from borate mining waste, meat bone and meal ash and kaolin clay was developed. In some compositions in related study, soda lime silica glass waste was used as an additive providing lightweight structure with a density below 0.45 g/cm3 and a crushing strength of 1.8±0.1 MPa. In another study within the research, compositions respecting the B2O3– P2O5–SiO2 glass-ceramic ternary system were prepared from; borate wastes, meat bone and meal ash and soda lime silica glass waste and sintered up to 950ºC. Low porous, highly crystallized glass-ceramic structures with density ranging between 1.8 ± 0,7 to 2.0 ± 0,3 g/cm3 and tensile strength ranging between 8,0 ± 2 to 15,0 ± 0,5 MPa were achieved. Lastly, diopside - wollastonite glass-ceramics (SiO2-Al2O3-CaO) from borate wastes, fly ash and soda lime silica glass waste were successfully obtained with controlled rapid sintering up to 950 and 1050ºC. The wollastonite and diopside crystal sizes were improved by adopting varied combinations of formulations and heating rates.The properties of the obtained materials show; the products with a uniform pore structure could be useful for thermal and acoustic insulations and can be embedded in lightweight concrete where low porous glass-ceramics can be employed as building blocks or additive in cement and ceramic industries.

Benzer Tezler

  1. Tuz Gölü'nden solvent ekstraksiyonuyla lityum eldesi

    Solvent extraction of lithium from Tuz Lake

    MERVE ÖZTÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Metalurji Mühendisliğiİstanbul Teknik Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHMET ŞEREF SÖNMEZ

  2. Bor karbür katkılı PMMA (polimetil metakrilat) polimerkompozitlerin ATRP metodu ile sentezi ve karakterizasyonu

    Synthesis and characterization of boron carbide additived PMMA (polymethyl methacrylate) polymer composites by ATRP method

    DUYGU TULUK TÜRKMANİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Metalurji Mühendisliğiİstanbul Teknik Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    PROF. DR. CÜNEYT ARSLAN

    PROF. DR. NİLGÜN BAYDOĞAN

  3. Li2O - ZnO - Al2O3 camlarının kontrollü kristalizasyonu ve cam seramiklerin karakterizasyonu

    The Controlled crystallization of Li2O - ZnO - Al2O3 - SiO2 glasses and the characterization of glass ceramics

    ENGİN MAYTALMAN

    Yüksek Lisans

    Türkçe

    Türkçe

    1999

    Metalurji Mühendisliğiİstanbul Teknik Üniversitesi

    Metalurji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERDEM DEMİRKESEN

  4. Development and characterization of ceramic nanofiber membranes for dye removal from textile wastewater

    Tekstil atıksularından boya giderimi için seramik nanofiber membranların geliştirilmesi ve karakterizasyonu

    NURAY YERLİ SOYLU

    Doktora

    İngilizce

    İngilizce

    2024

    Kimya Mühendisliğiİstanbul Teknik Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    PROF. DR. MELEK MÜMİNE EROL TAYGUN