Stochastic cellular manufacturing system design and control
Başlık çevirisi mevcut değil.
- Tez No: 400971
- Danışmanlar: DR. GÜRSEL A. SÜER
- Tez Türü: Doktora
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2012
- Dil: İngilizce
- Üniversite: Ohio University
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 256
Özet
Özet yok.
Özet (Çeviri)
Cellular manufacturing has been an important phenomenon in manufacturing in recent decades. Tremendous amount of work has been done regarding issues such as cell formation, cell loading and job scheduling. However, majority of literature lacks consideration of uncertainty in the problem definition phase, thus methodology. In this dissertation, the impact of uncertainty of demand, processing times and capacity requirements on a cellular manufacturing system (CMS) performance are addressed and stochastic optimization approaches are developed and applied to ten case problems from industrial companies and cellular manufacturing literature. This dissertation consists of mainly three phases, namely: stochastic CMS design, stochastic CMS control and the integrated modeling and analysis of CMS design and CMS control. Capacitated cell formation under the impact of uncertain demand and processing times is defined as the stochastic CMS design problem. On the other hand, cell loading, job sequencing and manpower allocation considering probabilistic demand and processing times are the main issues addressed in the stochastic CMS control phase. Finally, the relationship between stochastic CMS design and stochastic CMS control comprises the“integration”phase. Nonlinear stochastic programming models are developed to optimize each phase and simulation models are also built to validate the results of mathematical optimization and assess manufacturing system performance. To deal with larger problems, as one of the widely used metaheuristic optimization techniques, Genetic Algorithms (GA) is utilized; a GA model is developed and compared with stochastic programming model by using simulation modeling and statistical analysis. Results indicated that stochastic programming can assist with a better decision making on CMS design and control due to its capability of capturing probabilistic nature of problems. In all cases, the proposed stochastic optimization approaches outperformed the conventional deterministic methods. Moreover, the proposed stochastic models let the decision maker to decide the amount of risk to take prior to making design and control related decisions. All in all, I believe that the proposed stochastic optimization-based decision making concepts will open a new corridor in cellular manufacturing research. On the other hand, the proposed approaches can easily be implemented in other popular industrial engineering problem domains including supply chain, healthcare, transportation and logistics.
Benzer Tezler
- Çifte kaynak kısıtlı grup teknolojisi üretim sistemlerinin bozucu faktörlere dayanıklı tasarımı
Robust design of dual resource constrained group technology production systems
MUSTAFA AKHUN
Doktora
Türkçe
1999
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiPROF. DR. M. BÜLENT DURMUŞOĞLU
- Melez üretim sisteminde CONWIP kontrolü ve parti bölmesinin birlikte modellenmesi
Modelling of a hybrid manufacturing system with lot splitting under CONWIP production control
CANAN AĞLAN
Doktora
Türkçe
2014
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET BÜLENT DURMUŞOĞLU
- GT yöntemlerinin sınıflandırması, performans ölçütleri, üretimle ilgili verileri kullanan yeni yöntemlere örnekler ve genetik algoritmalar
Taxonomy of GT methods, performance measures,some new GT methods that is able to incorporate pertinent manufacturing data and genetic algorithms
HATİCE DERİCİ
Yüksek Lisans
Türkçe
1997
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. M. BÜLENT DURMUŞOĞLU
- Dinamik ve stokastik hücresel imalat sistemi tasarımı problemine çözüm yaklaşımları
Solution approaches for the dynamic stochastic cellular manufacturing system design problem
HÜSAMETTİN BAYRAM
Doktora
Türkçe
2015
Endüstri ve Endüstri MühendisliğiGazi ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
YRD. DOÇ. RAMAZAN ŞAHİN
PROF. DR. ORHAN TÜRKBEY
- Design of manufacturing cells for uncertain production requirements
Üretim ihtiyaçlarının belirsiz olduğu durumda imalat hücrelerinin tasarımı
ÖZGÜR ESKİ
Doktora
İngilizce
2007
Endüstri ve Endüstri MühendisliğiDokuz Eylül ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. İREM ÖZKARAHAN
YRD. DOÇ. DR. ŞEYDA TOPALOĞLU