Geri Dön

Stochastic cellular manufacturing system design and control

Başlık çevirisi mevcut değil.

  1. Tez No: 400971
  2. Yazar: GÖKHAN EĞİLMEZ
  3. Danışmanlar: DR. GÜRSEL A. SÜER
  4. Tez Türü: Doktora
  5. Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: İngilizce
  9. Üniversite: Ohio University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 256

Özet

Özet yok.

Özet (Çeviri)

Cellular manufacturing has been an important phenomenon in manufacturing in recent decades. Tremendous amount of work has been done regarding issues such as cell formation, cell loading and job scheduling. However, majority of literature lacks consideration of uncertainty in the problem definition phase, thus methodology. In this dissertation, the impact of uncertainty of demand, processing times and capacity requirements on a cellular manufacturing system (CMS) performance are addressed and stochastic optimization approaches are developed and applied to ten case problems from industrial companies and cellular manufacturing literature. This dissertation consists of mainly three phases, namely: stochastic CMS design, stochastic CMS control and the integrated modeling and analysis of CMS design and CMS control. Capacitated cell formation under the impact of uncertain demand and processing times is defined as the stochastic CMS design problem. On the other hand, cell loading, job sequencing and manpower allocation considering probabilistic demand and processing times are the main issues addressed in the stochastic CMS control phase. Finally, the relationship between stochastic CMS design and stochastic CMS control comprises the“integration”phase. Nonlinear stochastic programming models are developed to optimize each phase and simulation models are also built to validate the results of mathematical optimization and assess manufacturing system performance. To deal with larger problems, as one of the widely used metaheuristic optimization techniques, Genetic Algorithms (GA) is utilized; a GA model is developed and compared with stochastic programming model by using simulation modeling and statistical analysis. Results indicated that stochastic programming can assist with a better decision making on CMS design and control due to its capability of capturing probabilistic nature of problems. In all cases, the proposed stochastic optimization approaches outperformed the conventional deterministic methods. Moreover, the proposed stochastic models let the decision maker to decide the amount of risk to take prior to making design and control related decisions. All in all, I believe that the proposed stochastic optimization-based decision making concepts will open a new corridor in cellular manufacturing research. On the other hand, the proposed approaches can easily be implemented in other popular industrial engineering problem domains including supply chain, healthcare, transportation and logistics.

Benzer Tezler

  1. Çifte kaynak kısıtlı grup teknolojisi üretim sistemlerinin bozucu faktörlere dayanıklı tasarımı

    Robust design of dual resource constrained group technology production systems

    MUSTAFA AKHUN

    Doktora

    Türkçe

    Türkçe

    1999

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    PROF. DR. M. BÜLENT DURMUŞOĞLU

  2. Melez üretim sisteminde CONWIP kontrolü ve parti bölmesinin birlikte modellenmesi

    Modelling of a hybrid manufacturing system with lot splitting under CONWIP production control

    CANAN AĞLAN

    Doktora

    Türkçe

    Türkçe

    2014

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET BÜLENT DURMUŞOĞLU

  3. GT yöntemlerinin sınıflandırması, performans ölçütleri, üretimle ilgili verileri kullanan yeni yöntemlere örnekler ve genetik algoritmalar

    Taxonomy of GT methods, performance measures,some new GT methods that is able to incorporate pertinent manufacturing data and genetic algorithms

    HATİCE DERİCİ

    Yüksek Lisans

    Türkçe

    Türkçe

    1997

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. M. BÜLENT DURMUŞOĞLU

  4. Dinamik ve stokastik hücresel imalat sistemi tasarımı problemine çözüm yaklaşımları

    Solution approaches for the dynamic stochastic cellular manufacturing system design problem

    HÜSAMETTİN BAYRAM

    Doktora

    Türkçe

    Türkçe

    2015

    Endüstri ve Endüstri MühendisliğiGazi Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. RAMAZAN ŞAHİN

    PROF. DR. ORHAN TÜRKBEY

  5. Design of manufacturing cells for uncertain production requirements

    Üretim ihtiyaçlarının belirsiz olduğu durumda imalat hücrelerinin tasarımı

    ÖZGÜR ESKİ

    Doktora

    İngilizce

    İngilizce

    2007

    Endüstri ve Endüstri MühendisliğiDokuz Eylül Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. İREM ÖZKARAHAN

    YRD. DOÇ. DR. ŞEYDA TOPALOĞLU