Geri Dön

Computational imaging and inverse techniques for high-resolution and instantaneous spectral imaging

Başlık çevirisi mevcut değil.

  1. Tez No: 401328
  2. Yazar: SEVİNÇ FİGEN ÖKTEM
  3. Danışmanlar: PROF. FARZAD KAMALABADI, PROF. RICHARD E. BLAHUT
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: University of Illinois at Urbana-Champaign
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 137

Özet

Özet yok.

Özet (Çeviri)

In this thesis, we develop a class of novel spectral imaging techniques that enable capabilities beyond the reach of conventional methods. Each development is based on computational imaging, which involves distributing the spectral imaging task between a physical and a computational system and then digitally forming images of interest from multiplexed measurements by means of solving an inverse problem. In particular, in the first approach, a nonscanning spectral imaging technique is developed to enable performing spectroscopy over a two-dimensional instantaneous field-of-view. This technique combines a parametric estimation approach with a slitless spectrometer configuration. In the second approach, a spectral imaging technique with an optical device known as a photon sieve is developed to achieve superior spatial and spectral resolutions relative to conventional filter-based spectral imagers. This technique relies on the wavelength-dependent focusing property of the photon sieve, and multiplexed measurements recorded by a photon sieve imaging system with a moving detector. In each of these two techniques, multiplexed measurements are combined with an image formation model and then the resultant inverse problem is solved computationally for image reconstruction. The associated inverse problems, which can be viewed as multiframe image deblurring problems, are formulated in a Bayesian estimation framework to incorporate the additional prior statistical knowledge of the targeted objects. Computationally efficient algorithms are then designed to solve the resulting nonlinear optimization problems. In addition to the development of each technique, Bayesian Cramer-Rao bounds are also obtained to characterize the estimation uncertainties and performance limits, as well as to explore the optimized system design. The effectiveness of the spectral imaging techniques are illustrated for an application in remote sensing of the solar atmosphere. Lastly, the phase retrieval problem, another inverse problem that arises in the photon-sieve imaging setting with coherent illumi nation, is studied to devise computationally efficient algorithms. As a whole, the developed spectral imaging techniques enable finer spectral information in the form of higher temporal, spatial, and spectral resolutions. This will enhance the unique diagnostic capabilities of conventional spectral imaging systems in applications as diverse as physics, chemistry, biology, medicine, astronomy and remote sensing.

Benzer Tezler

  1. Computational spectral imaging techniques using diffractive lenses and compressive sensing

    Kırınımlı lensler ve sıkıştırılmış algılamaya dayalı hesaplamalı spektral görüntüleme teknikleri

    OĞUZHAN FATİH KAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SEVİNÇ FİGEN ÖKTEM

  2. Efficient techniques for the single-frame super-resolution reconstruction of intensity images

    Tek imgeden süper-çözünürlüklü geri-çatma amacıyla geliştirilmiş etkin yöntemler

    AYDIN AKYOL

    Doktora

    İngilizce

    İngilizce

    2012

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MUHİTTİN GÖKMEN

  3. Derin öğrenme ile süper çözünürlüklü radar görüntüleme

    Super resolution radar imaging with deep learning

    İREM FADİME ERİM

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik-Haberleşme Eğitimi Ana Bilim Dalı

    PROF. DR. IŞIN ERER

  4. Alt uzay yöntemleri ile duvar arkası görüntüleme

    Through wall imaging with subspace methods

    HÜSEYİN ÖNDER BEKTAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÖZGÜR ÖZDEMİR

  5. Numerical and experimental evaluation of computational spectral imaging with photon sieves

    Foton süzgeci ile hesaplamalı spektral görüntülemenin sayısal ve deneysel incelemesi

    TUNÇ ALKANAT

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. SEVİNÇ FİGEN ÖKTEM