Geri Dön

System identification towards diagnosis to prognosis

Başlık çevirisi mevcut değil.

  1. Tez No: 401356
  2. Yazar: UMUT YILDIRIM
  3. Danışmanlar: PROF. FABIO CASCIATI
  4. Tez Türü: Doktora
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: Università degli Studi di Pavia (University of Pavia)
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 157

Özet

Özet yok.

Özet (Çeviri)

The civil engineering structural systems maintenance and failures have increased after tremendous disasters such as earthquakes, floods or due to problems of load-resistance capacity, fatigue, corrosion, etc., respectively. These problems result in the assessment necessity of these engineering systems before the catastrophic failures. Structural health monitoring (SHM) discipline and its tools have emerged over the past decade in order to ensure safety by the engineers. This interdisciplinary research field is dealing with the development and implementation of data processing and non-destructive sensing methods aimed to perform condition assessment and damage detection of structural systems (e.g., aircraft, ships, machines and finally civil structures and infrastructures). Recently, the non-linear situation, the on-line and the real-time SHM have witnessed extensive developments. But, some technological problems still remain. High costs and laborious installations of monitoring systems hinder their widespread usage. For instance, wireless sensors have the potential to reduce the cost of monitoring systems while offering onboard data processing capabilities in any sink node of sensor networks. Moreover, there exists a lack of generalized data processing algorithms that extract information from sensed data. This important issue is one of the major concerning parts of system identification field. With the emergence of SHM, system identification has played a significant role since an estimated mathematical model reflecting the system dynamics can be used for diagnosis and prognosis issues. The mentioned chapters herein are an expository contribution on the subject of structural system identification, measured signal processing (data compression) and their applications to structural control, model-based structural health/damage detection (e.g., black-box system identification algorithm), system realizations (e.g., Eigen system realization), parameter estimations and prognosis (reliability) of the various case studies. The study focuses on the state-space oriented system identification theory as specialized to structural dynamics governing equations of motion, various input–output combinations for single-input and single-output or multi-output problems, and robust ways of identifying proportional damping, stiffness, frequency parameters, and the use of identification tools for damage detection from measured response data. The materials covered in this study are largely extracted from the experimental data from laboratory tests carried out at Pavia University, at Civil Engineering Department, and its collaborations from the different institutes and companies under the past and present frameworks of European Union (EU) funded projects.

Benzer Tezler

  1. Behçet hastalığında rol alan yeni immunogenetik antijenlerin SEREX metodu ile belirlenmesi

    Identification of new immunogenic antigens in Behçet disease by SEREX method

    BURÇAK VURAL

    Doktora

    Türkçe

    Türkçe

    2005

    Genetikİstanbul Üniversitesi

    Genetik Ana Bilim Dalı

    PROF.DR. UĞUR ÖZBEK

  2. Dikkat eksikliği ve hiperaktivite bozukluğu olan çocukların el yazılarının görüntü işleme teknikleri ile analizi

    Analysis of handwriting of children with attention deficit hyperactivity disorder using image processing techniques

    ÖZLEM YILDIZ BUDAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUHAMMED FATİH ADAK

  3. Power system fault identification and classification in fuel cells via artificial neural network

    Yakıt hücrelerinde yapay sinir ağı kullanılarak güç sistemi arıza tespiti ve sınıflandırması

    RAFAH HUSSEIN ALZURFI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik MühendisliğiKarabük Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ CİHAT ŞEKER

  4. Kedilerin enfeksiyöz peritonitisi hastalığının nörolojik formunda merkezi sinir sistemi hasarının nöronal biyobelirteçler ile değerlendirilmesi

    Evaluation of central nervous system damage in the neurological form of infectious peritonitis of cats with neuronal biomarkers

    DEVRİM İLKE İRDEM

    Doktora

    Türkçe

    Türkçe

    2025

    Veteriner HekimliğiAnkara Üniversitesi

    İç Hastalıkları (Veterinerlik) Ana Bilim Dalı

    DOÇ. DR. İDİL BAŞTAN

  5. Çukurova bölgesinde klinik örneklerden izole edilen Mycobacterium tuberculosis kompleks (MTBK)suşlarında çoklu ilaç direnci (ÇİD) ile beraber ikinci seçenek anti-tüberküloz ilaçlara da karşı gelişen yaygın ilaç direncinin (YİD) fenotipik ve genotipik olarak incelenmesi

    Phenotypic and genotypic investigation of multidrug resistance (MDR) as well as extensively drug resistance (XDR) developing towards second-line anti-tuberculosis drugs in mycobacterium tuberculosis complex (MTBC) strains isolated from clinical samples in cukurova region

    EMEL YARAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    MikrobiyolojiÇukurova Üniversitesi

    Tıbbi Mikrobiyoloji Ana Bilim Dalı

    YRD. DOÇ. DR. TOĞRUL NAĞIYEV