Geri Dön

Building integrated solar thermal collectors for heating and cooling applications

Başlık çevirisi mevcut değil.

  1. Tez No: 402002
  2. Yazar: MAHMUT SAMİ BÜKER
  3. Danışmanlar: PROF. SAFFA RIFFAT
  4. Tez Türü: Doktora
  5. Konular: Enerji, Energy
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: The University of Nottingham
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 373

Özet

Özet yok.

Özet (Çeviri)

International Energy Agency Solar Heating & Cooling (IEA SHC) programme states the fact that space/water heating and cooling demand account for over 75% of the energy consumed in single and multi-family homes. Solar energy technology can meet up to 100% of this demand depending on the size of the system, storage capacity, the heat load and the region's climate. Solar thermal collectors are particular type of heat extracting devices that convert solar radiation into thermal energy through a transport medium or flowing fluid. Although hybrid PV/T or thermal-alone systems offer some advantages to improve the solar heat utilisation, there are a few technical challenges found in these systems in practice that prevented wide-scale applications. These technical drawbacks include being expensive to make and install, inability of switching already-built photovoltaic (PV) systems into PV/T systems, architectural design etc. The aims of this project, therefore, were to investigate roof integrated solar thermal roof collectors that properly blend into surrounding thus avoiding 'add on' appearance and having a dual function (heat absorption and roofing). Another objective was to address the inherent technical pitfalls and practical limitations of conventional solar thermal collectors by bringing unique, inexpensive, maintenance free and easily adaptable solutions. Thus, in this innovative research, unique and simple building integrated solar thermal roof collectors have been developed for heating & cooling applications. The roof systems which mainly based on low cost and structurally unique polyethylene heat exchanger are relatively cost effective, competitive and developed by primarily exploiting components and techniques widely available on the market.The following objectives have been independently achieved via evaluating three aspects of investigations as following:  Investigation on the performance of poly heat exchanger underneath PV units  Investigation on the performance of a Building Integrated PV/T Roof 'Invisible' Collector combined with a liquid desiccant enhanced indirect evaporative cooling system  Investigation on the build-up and performance test of a novel 'Sandwich' solar thermal roof for heat pump operation These works have been assessed by means of computer simulation, laboratory and field experimental work and have been demonstrated adequately. The key findings from the study confirm the potential of the examined technology, and elucidate the specific conclusions for the practice of such systems. The analysis showed that water temperature within the poly heat exchanger loop underneath PV units could reach up to 36°C and the system would achieve up to 20.25% overall thermal efficiency. Techno-economic analysis was carried out by applying the Life Cycle Cost (LCC) method. Evaluations showed that the estimated annual energy savings of the overall system was 10.3 MWh/year and the cost of power generation was found to be £0.0622 per kWh. The heat exchanger loop was coupled with a liquid desiccant enhanced indirect evaporative cooling unit and experimental results indicated that the proposed system could supply about 3 kW of heating and 5.2 kW of cooling power. Lastly, the results from test of a novel solar thermal collector for heat pump operation presented that the difference in water temperature could reach up to 18°C while maximum thermal efficiency found to be 26%. Coefficient Performance of the heat pump (COPHP) and overall system (COPSYS) averages were attained as COPHP=3.01 and COPSYS=2.29, respectively. An economic analysis pointed a minimum payback period of about 3 years for the system.

Benzer Tezler

  1. Güneş enerjisinden ısıtmada yararlanma

    Utilization from solar energy on heating

    M.NAZIM ÖZGEN

    Yüksek Lisans

    Türkçe

    Türkçe

    1990

    Mimarlıkİstanbul Teknik Üniversitesi

    PROF.DR. MEHMET KÜÇÜKDOĞU

  2. Yoğunlaştırıcılı fotovoltaik panel tasarımı, imalatı ve deneysel analizi

    Designing, manufacturing and experimental analyzing of concentrated photovoltaic panel

    SADIK ZUHUR

    Doktora

    Türkçe

    Türkçe

    2019

    EnerjiKarabük Üniversitesi

    Enerji Sistemleri Mühendisliği Ana Bilim Dalı

    PROF. DR. İLHAN CEYLAN

  3. Bina temeli altı toprak ısı değiştiricisindeki ısı transferinin incelenmesi

    The investigation of heat transfer in ground heat exchangers under building foundation

    NURULLAH KAYACI

    Doktora

    Türkçe

    Türkçe

    2018

    Makine MühendisliğiYıldız Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. HAKAN DEMİR

    PROF. DR. ŞEVKET ÖZGÜR ATAYILMAZ

  4. Güneş enerjisi destekli ısı pompası sistemlerinin performans analizi

    Performance analysis of solar energy assisted heat pump systems

    BUĞRA ŞENSOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    EnerjiGazi Üniversitesi

    Enerji Sistemleri Mühendisliği Ana Bilim Dalı

    PROF. DR. MUSTAFA AKTAŞ

  5. Güneş enerjili kendinden pompalı sıcak su sisteminin analiz ve simülasyonu

    Analysis and simulation of a two phase self pumping solar water heater

    TUNCAY GÜVEN

    Yüksek Lisans

    Türkçe

    Türkçe

    1992

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    PROF. DR. A. NİLÜFER EĞRİCAN