Supervised and interactive image segmentation techniques with an application to prostate cancer
Başlık çevirisi mevcut değil.
- Tez No: 402208
- Danışmanlar: DR. IMAM SAMIL YETIK
- Tez Türü: Doktora
- Konular: Üroloji, Urology
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: İngilizce
- Üniversite: Illinois Institute of Technology
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 139
Özet
Özet yok.
Özet (Çeviri)
Prostate cancer is a leading cause of cancer death for men in the United States. Fortunately, the survival rate for early diagnosed patients is relatively high. Accurate prostate cancer localization with noninvasive imaging using MRI can be used to guide biopsy, radiotherapy, and surgery as well as to monitor disease progression. However, in general, a single type of MRI is not sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e., the use of multiple MRI-derived datasets, has emerged as a promising noninvasive imaging technique for the localization of prostate cancer; however almost all studies are with human readers. There is a significant inter and intra-observer variability for human readers, and it is substantially difficult for humans to analyze the large dataset of multispectral MRI. To solve these problems, this thesis presents various novel supervised and semi- supervised (interactive) segmentation techniques. Initially, we develop a supervised segmentation method by combining conditional random fields (CRF) and support vector machines (SVM) with a cost-sensitive framework, and show that proposed method further improves classical and cost-sensitive SVM results by incorporating spatial information. Next, we propose an extension of popular semi-supervised seg- mentation method, namely random walker (RW) algorithm, with automated seed initialization for multispectral MRI images. We also present an automated shape and boundary based segmentation approach for prostate segmentation from T2-weighted MRI. Proposed method is based on a banded geocuts algorithm that utilizes bound- ary and shape information to yield prostate segmentation. Finally, we develop a novel method that has the ability to design classifiers obtained from one imaging protocol and/or MRI device to be used on a dataset from another protocol and/or imaging device. In order to evaluate the performance of the proposed methods, we utilize multispectral MRI datasets acquired from 21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps to increase the accuracy of prostate cancer localization when compared to single MR images; and that using advanced proposed methods for prostate cancer localization performs better than available methods in the literature.
Benzer Tezler
- Yüksek mekansal çözünürlüklü uydu/uçak platformlu görüntüler ve CBS teknolojisi kullanılarak Van-Erciş depremi sonrası bina hasar tespiti
Determination of building damage after Van-Ercis earthquake by using very high resolution satellite/aircraft platforms and GIS technology
ASLI SABUNCU
Doktora
Türkçe
2018
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. AYŞE FİLİZ SUNAR
- Yüksek çözünürlüklü uydu görüntüleri kullanarak benzer spektral özelliklere sahip doğal nesnelerin ayırt edilmesine yönelik bir metodoloji geliştirme
Developing a methodology for discriminating natural objects having spectrally similar features using very high resolution satellite imagery
İSMAİL ÇÖLKESEN
Doktora
Türkçe
2015
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. TAHSİN YOMRALIOĞLU
- Forest stand segmentation with time series optical satellite imagery and superpixels
Zaman-serisi optik uydu görüntüleri ve süperpikseller ile meşçere kuruluşlarının bölütlenmesi
CANER DEMİRPOLAT
Doktora
İngilizce
2023
Astronomi ve Uzay BilimleriOrta Doğu Teknik ÜniversitesiJeodezi ve Coğrafi Bilgi Teknolojileri Ana Bilim Dalı
PROF. DR. MEHMET LÜTFİ SÜZEN
PROF. DR. UĞUR MURAT LELOĞLU
- Extraction of vascular trees for living donated liver transplantation
Canlı vericili karaciğer nakli için karaciğer damar ağacı bölütleme
PARVIN BULUJU
Yüksek Lisans
İngilizce
2019
Elektrik ve Elektronik MühendisliğiDokuz Eylül ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MUSTAFA ALPER SELVER
- Semi-automatic video object segmentation
Yarı-otomatik video nesne bölütleme
ERSİN ESEN
Yüksek Lisans
İngilizce
2000
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. LEVENT ONURAL