A study on object tracking with angular weighted particle filter
Başlık çevirisi mevcut değil.
- Tez No: 402383
- Danışmanlar: DR. BYUNG-WOO YOON
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: İngilizce
- Üniversite: Kyungsung University
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 79
Özet
Özet yok.
Özet (Çeviri)
Intelligent image processing technology is being applied to various areas as security surveillance, medical engineering, and industrial automation etc. Especially, there are various studies about it to prevent traffic accidents and control traffic flow effectively, which is named as Intelligent Transportation Systems(ITS). ITS based on image processing involves the functions such as detection of reverse driving, fallen objects, and pedestrians on the road for the purpose of the analysis of traffic load and early detection of traffic accidents.These perception of situation depends on the performance of object detection and tracking. Usually, Adaboost algorithm and SVM algorithm are used for object detection, and optical flow, Kaman filter, and particle filter are used for object tracking. Particle filter can track the objects well in non-Gaussian medium, so it can adapt well for the randomness in the real world. However, it requires too large amounts of computations. In this dissertation, a modified particle filter algorithm is proposed to improve the performance of object tracking and decrease the computational complexity. It uses the information of color histogram for defining the target object, and uses the direction of car driving to change the statistical characteristic of each particle for reducing the number of particles. In the first stage of the proposed algorithm, the motion angle of the target is calculated. In the second stage, the angle between the motion angle of the car and each particle is calculated for all particles. In the last stage, the probability of each particle is weighted according to the calculated angle difference. In this way, the particles moving similar direction with the target get higher weights, and the state parameters of them contribute more to tracking the target. Because of this, the proposed algorithm becomes more stable and robust against noises. The experimental results for many videos from various roads, showed that proposed algorithm provides better tracking performance than the conventional algorithm. It can track the targets more accurately than the conventional algorithm, and the computation is reduced because of the decrement of particles number. We expect that the proposed particle filter can contribute to the improvement of the ITS based on image.
Benzer Tezler
- GNSS ve IMU kullanarak ARM tabanlı seyrüsefer sisteminin geliştirilmesi
Development of ARM based navigation system using GNSS and IMU
RAMAZAN SAYAN
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiMarmara ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ VEYSEL GÖKHAN BÖCEKÇİ
PROF. DR. HAYRİYE KORKMAZ
- Dört rotorlu bir insansız hava aracının görüntü işleme tabanlı otomatik kontrolü
Vision-based automatic control of a quadrotor unmanned aerial vehicle
GÜRSEL DENİZ
Yüksek Lisans
Türkçe
2023
Elektrik ve Elektronik MühendisliğiErciyes ÜniversitesiUçak Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HARUN ÇELİK
- İki eksenli uzaktan komutalı hedef takip sisteminin tasarımı ve kontrolü
Design and control of two-axis remote commanded target tracking system
MUSTAFA IŞIK AKYÜZ
Yüksek Lisans
Türkçe
2021
Savunma ve Savunma Teknolojileriİstanbul Teknik ÜniversitesiSavunma Teknolojileri Ana Bilim Dalı
PROF. DR. İBRAHİM ÖZKOL
- Distance detection method based on pixel registration with image processing
Görüntü işleme ile piksel çakıştırmaya dayalı mesafe tespit yöntemi
HAYDAR YANIK
Doktora
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTokat Gaziosmanpaşa ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. BÜLENT TURAN
- Bir robotik manipülatörün eklem ve kartezyen esaslı öngörülü kontrolu
Joint and cartesian based predictive control of a robotic manipulator
RECEP KAZAN