Scalable synthesis and energy applications of defect engineered nano materials
Başlık çevirisi mevcut değil.
- Tez No: 402665
- Danışmanlar: DR. APPARAO M. RAO
- Tez Türü: Doktora
- Konular: Fizik ve Fizik Mühendisliği, Metalurji Mühendisliği, Physics and Physics Engineering, Metallurgical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: İngilizce
- Üniversite: Clemson University
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 179
Özet
Özet yok.
Özet (Çeviri)
Nanomaterials and nanotechnologies have attracted a great deal of attention in a few decades due to their novel physical properties such as, high aspect ratio, surface morphology, impurities, etc. which lead to unique chemical, optical and electronic properties. The awareness of importance of nanomaterials has motivated researchers to develop nanomaterial growth techniques to further control nanostructures properties such as, size, surface morphology, etc. that may alter their fundamental behavior. Carbon nanotubes (CNTs) are one of the most promising materials with their rigidity, strength, elasticity and electric conductivity for future applications. Despite their excellent properties explored by the abundant research works, there is big challenge to introduce them into the macroscopic world for practical applications. This thesis first gives a brief overview of the CNTs, it will then go on mechanical and oil absorption properties of macro-scale CNT assemblies, then following CNT energy storage applications and finally fundamental studies of defect introduced graphene systems. Chapter Two focuses on helically coiled carbon nanotube (HCNT) foams in compression. Similarly to other foams, HCNT foams exhibit preconditioning effects in response to cyclic loading; however, their fundamental deformation mechanisms are unique. Bulk HCNT foams exhibit super-compressibility and recover more than 90% of large compressive strains (up to 80%). When subjected to striker impacts, HCNT foams mitigate impact stresses more effectively compared to other CNT foams comprised of non-helical CNTs (~50% improvement). The unique mechanical properties we revealed demonstrate that the HCNT foams are ideally suited for applications in packaging, impact protection, and vibration mitigation. The third chapter describes a simple method for the scalable synthesis of threedimensional, elastic, and recyclable multi-walled carbon nanotube (MWCNT) based light weight bucky-aerogels (BAGs) that are capable of efficiently absorbing non-polar solvents and separating oil-in-water emulsions. Furthermore, BAGs exhibit resilience to impact by recovering more than 70% of the deformation. The energy dissipated by BAGs at 80% compressive strain is in the order of 500 kJm-3, which is nearly 50 times more than the energy dissipated by commercial foams with similar densities. In the forth chapter, we demonstrate the synthesis of high-surface area, polymermodified carbon nanotube (or helically coiled carbon nanotube (HCNT))“paper”electrodes for high-power, high-energy density supercapacitors using simple fabrication methods. The use of conductive, high surface area carbon nanomaterials allows for the utilization of low-cost, non-conductive polymers containing reversible redox groups with higher charge capacity, such as sulfonated lignin. Compared to electrodes containing only helically coiled carbon nanotubes (80 Fg-1), paper electrodes fabricated with redox polymers show an increase in electrode capacitance to over 600 Fg-1 along with an increase in charge capacity from 20 mA hrg-1 to 80 mA hrg-1. Chapter Five presents a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (~700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. In the sixth chapter, we have indicated a methodology for both increasing and decreasing the electrochemical capacitance of Few Layer Graphene based nano-graphites through a combination of argon and hydrogen-based plasma processing. In addition to the utility for charge storage, our work contributes to understanding and controlling the charge storage characteristics. In the final chapter, we have investigated a nitrogen-doped graphene. We demonstrate through Raman spectroscopy, nonlinear optical and ultrafast spectroscopy, and density functional theory that the graphitic dopant configuration is stable in graphene and does not significantly alter electron–electron or electron–phonon scattering, that is otherwise present in doped graphene, by preserving the crystal coherence length (La).
Benzer Tezler
- TiO2 and Ce-TiO2 Photocatalysts for water remediation and energy applications
Su iyileştirme ve enerji uygulamaları için TiO2 ve Ce-TiO2 fotokatalizörleri
SELDA TOPÇU
Doktora
İngilizce
2016
EnerjiState University of New York (SUNY)Malzeme Bilimi ve Mühendisliği Ana Bilim Dalı
PROF. DR. PERENA GOUMA
- Sodyum iyon pillerde katot olarak kullanılabilecek prusya mavisi analoglarının sentezlenmesi, karbon kompozitlerinin üretilmesi ve performanslarının elektrokimyasal ve In Silico olarak araştırılması
Synthesis of prussian blue analogues, production of carbon composites and electrochemical and In Silico investigation of their performance in sodium ion batteries
BERKAY SUNGUR
- Preparation and characterization of nanofibers for energy applications
Enerji uygulamaları için nanofiberlerin hazırlanması ve karakterizasyonu
GÖKTUĞ CİHANBEYOĞLU
Yüksek Lisans
İngilizce
2023
Enerjiİstanbul Teknik ÜniversitesiNanobilim ve Nanomühendislik Ana Bilim Dalı
DOÇ. DR. MELTEM YANILMAZ
- Development of innovative polymeric membranes using green approaches for water and energy sustainability
Su ve enerji sürdürülebilirliği için yeşil yaklaşımlar kullanılarak yenilikçi polimerik membranların geliştirilmesi
ELİF GÜNGÖRMÜŞ DELİİSMAİL
Doktora
İngilizce
2022
Kimya Mühendisliğiİzmir Yüksek Teknoloji EnstitüsüKimya Mühendisliği Ana Bilim Dalı
PROF. DR. SACİDE ALTINKAYA
- Fabrication of graphene-coated flexible and conductive cotton fabrics
Grafen kaplı esnek ve ı̇letken pamuklu kumaşların üretı̇mı̇
SAMIR ABDUL SALAM SAAD
Yüksek Lisans
İngilizce
2023
Mekatronik MühendisliğiBahçeşehir ÜniversitesiMekatronik Ana Bilim Dalı
Assist. Prof. Dr. AMİR NAVİDFAR