Time domain surface integral equation solvers for quantum corrected electromagnetic analysis of plasmonic nanostructures
Başlık çevirisi mevcut değil.
- Tez No: 402995
- Danışmanlar: DR. HAKAN BAĞCI
- Tez Türü: Doktora
- Konular: Bilim ve Teknoloji, Fizik ve Fizik Mühendisliği, Science and Technology, Physics and Physics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: İngilizce
- Üniversite: King Abdullah University of Science and Technology
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 106
Özet
Özet yok.
Özet (Çeviri)
Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical e ects start to appear. These e ects cannot be accurately modeled by available classical numerical methods. One of these quantum e ects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons \jump" from one structure to another and introduce a path for electric current to ow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to nd the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to di erential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing eciency). The quantum model of the tunnel is obtained using density functional theory (DFT) computations, which account for the atomic structure of materials. Accuracy and applicability of this (quantum corrected) time domain surface integral equation solver will be shown by numerical examples.
Benzer Tezler
- 3-boyutlu maxwell denklemlerinin çözünümü
Başlık çevirisi yok
BAYRAM ÇELİK
Yüksek Lisans
Türkçe
1997
Astronomi ve Uzay Bilimleriİstanbul Teknik ÜniversitesiUzay Bilimleri ve Teknolojisi Ana Bilim Dalı
PROF. DR. ÜLGEN GÜLÇAT
- Fast and efficient solutions of multiscale electromagnetic problems
Çok ölcekli elektromanyetik problemlerin hızlı ve verimli çözümü
BAHRAM KHALICHI
Doktora
İngilizce
2020
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. VAKUR BEHÇET ERTÜRK
DOÇ. DR. ÖZGÜR SALİH ERGÜL
- Yıldırım yakalama çubuğunun elektromanyetik alan bakımından koruma bölgesinin moment yöntemi ile hesabı
Computation of protection zone in terms of electromagnetic field of a lightning rod using the method of moments
AYBİKE EKMEKÇİ
Yüksek Lisans
Türkçe
2018
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
PROF. DR. ÖZCAN KALENDERLİ
- Yüksek gerilim hatlarında yürüyen dalgalara korona etkilerinin incelenmesi
Analysis of corona effects for travelling waves on transmission lines
MEHMET ÖZALTINOK
Yüksek Lisans
Türkçe
1991
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiPROF.DR. MUZAFFER ÖZKAYA
- Numerical simulation of aircraft icing with an adaptive thermodynamic model considering ice accretion
Buz birikimini göz önüne alarak uyarlanmış bir termodinamik model ile uçakta buzlanmanın sayısal benzetimi
HADI SIYAHI
Doktora
İngilizce
2022
Havacılık Mühendisliğiİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
PROF. DR. AHMET CİHAT BAYTAŞ