Prediction of course completion based on participants' social engagement on a social-constructivist MOOC platform
Başlık çevirisi mevcut değil.
- Tez No: 403337
- Danışmanlar: Dr. SU WHITE, Prof. HUGH DAVIS
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2017
- Dil: İngilizce
- Üniversite: University of Southampton
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 144
Özet
Özet yok.
Özet (Çeviri)
MOOCs o er world-widely accessible online content typically including videos, readings, quizzes along with social communication tools on a platform that enables participants to learn at their own pace. In 2016, over 58 million people join MOOCs. Far fewer people actually participate in MOOCs than originally sign up and then there is a steady attrition as courses progress. The observation of high attrition has prompted concerns among MOOC providers to mitigate their high attrition rates. Recent studies have been able to correlate social engagement of learners to course completion. Researchers use participants' digital traces to make sense of their engagement in a course and identify their needs to predict future patterns and to make interventions based on these patterns. The research reported here was conducted to further understand learners social engagement on a social-constructivist MOOC platform, the impact of engagement on course completion, and to predict learners' course completion. The ndings of this research show that a commonly known social feature, follow, which is integrated into the Futurelearn MOOC platform has potential value in allowing tracking and analysing the behaviours of participants. The patterns of learners social engagement were modelled and a completion prediction model was developed. This model was successful at predicting those who might complete the course at a high or low success rate. The contributions of this research are that the behaviour chains could be the basis of a personalised recommender system, and the completion model based on social behaviour could contribute to wider prediction model based on a wider range of factors.
Benzer Tezler
- Kitlesel açık çevrimiçi kurslarda katılımcıların İngilizce dil gruplarının tespitine dayalı davranış ve performans analizi
Behaviour and performance analysis of learners identified in English language based groups on massive open online courses
İSMAİL DURU
Doktora
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BANU DİRİ
DOÇ. DR. GÜLÜSTAN DOĞAN
- Çevrimiçi BİT dersindeki öğrenci davranışlarının ve öğrenme performanslarının öğrenme analitiği ile incelenmesi
An examination of student behaviours and learning performances in online ICT course with learning analytics
SEMİH ORKUN
Yüksek Lisans
Türkçe
2024
Eğitim ve ÖğretimAnkara ÜniversitesiBilgisayar ve Öğretim Teknolojileri Eğitimi Ana Bilim Dalı
PROF. DR. AYFER ALPER
- Makine öğrenimi algoritmalarını kullanarak öğrenci akademik performans tahmini
Student academic performance prediction using machine learning algorithms
AIGERIM SULTANALI
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilişim Sistemleri Ana Bilim Dalı
PROF. DR. HASAN ÇAKIR
- Bitümlü sıcak karışımların deformasyon direncinin üç eksenli kayma mukavemeti deneyi ile incelenmesi
Investigation of deformation resistance of hot-mixed asphalt mixtures by triaxial shear strength test
ALTAN ÇETİN
Doktora
Türkçe
2008
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. EMİNE AĞAR