Geri Dön

Behavior based malware classification using online machine learning

Başlık çevirisi mevcut değil.

  1. Tez No: 403358
  2. Yazar: ABDURRAHMAN PEKTAŞ
  3. Danışmanlar: Prof. Dr. JEAN-CLAUDE FERNANDEZ, Dr. TANKUT ACARMAN
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Computer Engineering and Computer Science and Control, Science and Technology
  6. Anahtar Kelimeler: Malware classification, dynamic analysis, online machine learning, behavior modeling
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Université de Grenoble
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 155

Özet

Özet yok.

Özet (Çeviri)

Recently, malware (short for malicious software) has greatly evolved and has became a major threat to the home users, enterprises, and even to the governments. Despite the extensive use and availability of various anti-malware tools such as antiviruses, intrusion detection systems, firewalls etc., malware authors can readily evade these precautions by using obfuscation techniques. To mitigate this problem, malware researchers have proposed various data mining and machine learning approaches for detecting and classifying malware samples according to the their static or dynamic feature set. Although the proposed methods are effective over small sample sets, the scalability of these methods for large data-sets is under investigation and has not been solved yet. Moreover, it is well-known that the majority of malware is a variant of previously known samples. Consequently, the volume of new variants created far outpaces the current capacity of malware analysis. Thus developing a malware classification to cope with the increasing number of malware is essential for the security community. The key challenge in identifying the family of malware is to achieve a balance between increasing number of samples and classification accuracy. To overcome this limitation, unlike existing classification schemes which apply machine learning algorithms to stored data, (i.e. they are off-line algorithms) we propose a new malware classification system employing online machine learning algorithms that can provide instantaneous update about the new malware sample by following its introduction to the classification scheme. To achieve our goal, firstly we developed a portable, scalable and transparent malware analysis system called VirMon for dynamic analysis of malware targeting the Windows OS. VirMon collects the behavioral activities of analyzed samples in low kernel level through its developed mini-filter driver. Secondly, we set up a cluster of three machines for our online learning framework module (i.e. Jubatus), which allows to handle large scale data. This configuration allows each analysis machine to perform its tasks and delivers the obtained results to the cluster manager.Essentially, the proposed framework consists of three major stages. The first stage consists of extracting the behavior of the sample file under scrutiny and observing its interactions with the OS resources. At this stage, the sample file is run in a sandboxed environment. Our framework supports two sandbox environments: VirMon and Cuckoo. During the second stage, we apply feature extraction to the analysis report. The label of each sample is determined by using Virustotal, an online multiple anti-virus scanner framework consisting of 46 engines. Then at the final stage, the malware dataset is partitioned into training and testing sets. The training set is used to obtain a classification model and the testing set is used for evaluation purposes. To validate the effectiveness and scalability of our method, we have evaluated our method by using 18,000 recent malicious files including viruses, trojans, backdoors, worms, etc., obtained from VirusShare, and our experimental results show that our method performs malware classification with 92% of accuracy.

Benzer Tezler

  1. Makine öğrenmesi kullanarak windows olay kayıtları ile dinamik davranış analizi

    Dynamic behavior analysis through novel windows event logs with machine learning

    GÖKSUN ÖNAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTOBB Ekonomi ve Teknoloji Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ AYDIN SELÇUK

    DR. MESUT GÜVEN

  2. Siber güvenlik sistemleri için dinamik ve artımlı makine öğrenmesi yaklaşımları

    Dynamic and incremental machine learning approaches for cyber security systems

    ENGİN BAYSAL

    Doktora

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    PROF. DR. CÜNEYT BAYILMIŞ

  3. APT kaynaklı ataklara karşı dayanıklı etmen tabanlı ve ontolojik veri sızıntısı önleme sistemi

    Agent based and ontological data leakage prevention system against advanced persistent threats

    EMRAH KAYA

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. İBRAHİM ÖZÇELİK

  4. Behavior based malicious software detection and classification

    Davranış tabanlı zararlı yazılım tespiti ve sınıflandırılması

    ABDURRAHMAN PEKTAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2012

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGalatasaray Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TANKUT ACARMAN

  5. Android sistemlerde derin öğrenme tabanlı kötü amaçlı yazılım tespit sistemi

    Deep learning based malware detection system on android systems

    ESRA ÇALIK BAYAZIT

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. BUKET DOĞAN

    PROF. DR. ÖZGÜR KORAY ŞAHİNGÖZ