Yapay sinir ağları ile optik karakter tanıma kullanılarak günümüz Türkçesinin Osmanlıcaya çevrilmesi
Translating contemporary Turkish to Ottoman Turkish by using artificial neural network based optical character recognition
- Tez No: 434032
- Danışmanlar: YRD. DOÇ. DR. SERAP KAZAN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 62
Özet
Bu çalışmada, yapay sinir ağları (YSA) ile Optik Karakter Tanıma (OCR) kullanılarak, günümüz Türkçe'sini Osmanlı Türkçe'sine çevirme işlemi gerçekleştirilmiştir. Bu çalışma iki aşamadan oluşmaktadır. Birinci aşama herhangi bir resim üzerindeki karakterlerin akıllı bir sistem tarafından tanınıp ayrıştırılması işlemidir. İkinci aşama ise ayrıştırılmış karakterlerin Osmanlı Türkçe'sine çevrilmesi işlemidir. Birinci aşamada OCR ve Yapay Zekânın alt dallarından olan YSA'ndan faydalanılmıştır. Yapay Zekâ, idealize edilmiş bir yaklaşıma göre insan zekâsına özgü olan, algılama, öğrenme, çoğul kavramları bağlama, düşünme, fikir yürütme, sorun çözme, iletişim kurma, varsayım yapma ve karar verme gibi yüksek bilişsel fonksiyonları veya otonom davranışları sergilemesi beklenen yapay bir işletim sistemidir. YSA ise; insan beyninin bilgi işleme tekniğinden esinlenerek geliştirilmiş bir bilgi işlem teknolojisidir. YSA'nın eğitilmesi için kullanılacak olan resim formatındaki karakterler görüntü işleme tekniklerinden faydalanılarak, ikili resim elde edilmiş ve ölçeklendirilmiştir. Daha sonra bunların öznitelikleri çıkartılarak normalize edilmiştir. Normalize edilen veriler ağa sunularak ağ eğitilmiştir. Eğitilen YSA test edilerek başarımı hesaplanmıştır. Eğitilen ağ ayrıştırılmış karakterleri, sırası ile tanır. Tanınan kelimelerin Osmanlı Türkçe'sine çevrilme işlemi esnasında Osmanlıca gramer yapısına göre değiştirilmesi gerekir. Osmanlı Türkçesi gramer yapısına göre“a”seslisi için“ا”(elif), e seslisi için“ه”(he), o, ö, u, ü sesleri için“و”(vav) ve ı, i sesleri için ise“ی”(ye) kullanılır. Osmanlı Türkçe'sinde Arapça ve Farsça kelimeler de çok kullanılmaktadır. Bu kelimeler ise Arapça ve Farsça gramer yapısına göre çevrilmiştir.
Özet (Çeviri)
In this study, translation of current Turkish characteristics into Ottoman Turkish is performed by using artificial neural Optical Character Recognition. This study consists of two phases. The first phase is after recognized any character on the image which will be known and will be separated. Another step is separated characters will be converted to ottoman language. In that first step were used neural artificial networks that belongs to OCR system, artificial intelligence illiterately; the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. Subset of the artificial intelligence which is some of them is a neural artificial networks were gotten as idea of the human brain system, it include kind of microprocessor technology. In this technology were preferred expansionary networks as web structure and inside this technology there are some different technics effects perfectly such as image process techniques. In this study neural artificial networks were tested perfectly and applied on the study also all characters were separated intensively. Trained network recognizes the separated characters respectively. Dedicated words is translated by structure of the ottoman language grammar. Such as for sound of a“ا”(elif), for sound of e“ه”(he) for sounds of o,ö,ü,u“و ”(vav) for sound of ı, i“ی”(ye) and another mentioned words is translated Arabic and Persian grammar structures.
Benzer Tezler
- Yapay sinir ağları ile optik karakter tanıma
Optical character recognition with artificial neural network
MURATCAN UZTEMUR
Yüksek Lisans
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
PROF. DR. AFİFE LEYLA GÖREN SÜMER
- Intelligent plate number recognition system using segmentized method with artificial neural networks
Yapay sinir ağları ile segmentasyon metodu kullanılarak akıllı plaka numarası tanıma sistemi
AUWAL SALISU YUNUSA
Yüksek Lisans
İngilizce
2020
Mekatronik MühendisliğiFırat ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ CAFER BAL
- A Hybrid approach for Turkish optical character recognition
Türkçe optik karakter tanıma için hibrit bir yaklaşım
GÜLBERAL KIRÇİÇEĞİ YOKSUL AKINCI
Yüksek Lisans
İngilizce
2002
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. VOLKAN ATALAY
- Üniversite kampüsündeki araç plaka tanıma ve takibi için matematik ve algoritmik ilkeler
University campus vehicles number plate recognition and following mathematical and algorithmic principles
AHMED AMİR KHAN
Yüksek Lisans
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKahramanmaraş Sütçü İmam ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MAHİT GÜNEŞ
- Derin öğrenme yaklaşımıyla fatura görüntülerinden bilgi çıkarma algoritmaları ve uygulamaları
Information extraction algorithms and applications from the invoice images using a deep learning approach
ADEM AKDOĞAN
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
DR. ÖĞR. ÜYESİ RESMİYE NASİBOĞLU