Geri Dön

Obstrüktif uyku apne teşhisi için makine öğrenmesi tabanlı yeni bir yöntem geliştirilmesi

Developing a new method for obstructive sleep apnea diagnosis based on machine learning

  1. Tez No: 483852
  2. Yazar: MUHAMMED KÜRŞAD UÇAR
  3. Danışmanlar: DOÇ. DR. MEHMET RECEP BOZKURT
  4. Tez Türü: Doktora
  5. Konular: Biyoistatistik, Elektrik ve Elektronik Mühendisliği, Biostatistics, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 136

Özet

Obstrüktif Uyku Apne (OSA) uykuda solunumun durmasına bağlı olarak ortaya çıkan bir hastalıktır. Hastalığın teşhisi polisomnografi (PSG) cihazı kullanılarak uyku evreleme ve solunum skorlama adımları ile gerçekleştirilir. Sistem yapısı gereği teşhis sırasında hastaya birçok rahatsızlık vermektedir. Verilen rahatsızlıklara çözüm olabilecek, PSG cihazına alternatif sistemlere ihtiyaç duyulmaktadır. Bu tez çalışmasında, PSG cihazına alternatif yeni bir yaklaşım geliştirilmiştir. Bu yaklaşım ile PSG'ye alternatif, hastaya daha az rahatsızlık veren ve PSG kadar güvenilir bir cihazın oluşturulabileceği ispatlanmıştır. Çalışmada, 10 bireyden alınan Fotopletismografi (PPG) sinyali kullanılmıştır. Teşhis için PPG sinyali ve bu sinyalden türetilen Kalp Hızı Değişkeni (HRV) kullanılarak yapay zeka tabanlı teşhis algoritması tasarlanmıştır. Çalışma için PPG'den 46, HRV'den 40 adet olmak üzere toplam 86 özellik çıkarılmıştır. Çıkarılan özelliklerin, Mann-Whitney U Testi yöntemiyle, istatistiksel olarak, uyku uyanıklık ve anormal solunumsal olaylar (apne var - yok) için ayırt edici olup olmadığı tespit edilmeye çalışılmıştır. Ayrıca, özellikler, F-score özellik seçme yöntemleriyle 2 defa azaltılmış ve sınıflandırılmıştır. İstatistiksel sonuçlara göre, uyku evreleme işlemi için, 86 özellikten 75'inin uyku uyanıklık için anlamlı olduğu (p

Özet (Çeviri)

Obstructive Sleep Apnea (OSA) is a disease caused by breathlessness in sleep. Diagnosis of the disease is performed by polysomnography (PSG) device with sleep staging and respiratory scoring steps. The system structure causes many discomfort to the patient during diagnosis. Alternative systems are needed for the PSG device, which can be a solution to the inconveniences. In this thesis study, a new approach was developed to PSG device. This approach has been proven that an alternative to PSG is to create a device that is less disturbing to the patient and as reliable as PSG. In the study, a Photoplethysmography (PPG) signal from 10 individuals was used. For diagnosis, an artificial intelligence-based diagnostic algorithm is designed using PPG signal and Heart Rate Variable (HRV) derived from PPG. For the study, 86 features were extracted, 46 of PPG and 40 of HRV. Statistically, the Mann-Whitney U test was used to determine whether the extracted features were discriminatory for sleep – wakefulness and abnormal respiratory events (apnea present - absent). In addition, features are reduced by F-score property selection methods 2 times and classified. According to the statistical results, 75 of the 86 features were significant for sleep awake (p

Benzer Tezler

  1. Obstrüktif uyku apne teşhisi için tek kanal EKG ve hibrit makine öğrenmesi tabanlı yeni bir yöntem

    A new method based on single channel ECG and hybrid machine learning for obstructive sleep apnea diagnosis

    FERDA BOZKURT

    Doktora

    Türkçe

    Türkçe

    2020

    Elektrik ve Elektronik MühendisliğiSakarya Üniversitesi

    Elektrik-Elektronik Ana Bilim Dalı

    DOÇ. DR. AHMET ZENGİN

  2. Machine learning approach for predicting severity of obstructive sleep apnea syndrome

    Obstrüktif uyku apnesinin şiddetinin tahminlenmesinde makine öğrenmesi yaklaşımı

    ONURHAN HAMZAOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Hesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı

    PROF. DR. FETHİYE AYLİN SUNGUR

  3. Obsturiktif uyku apnesinde pozitif hava yolu basınç tedavisinin asimetrik dimetil arginin (ADMA) düzeyine etkisi

    Effect of positive airway pressure therapy on asymmetric dimethyl arginine (ADMA) level in obstructive sleep apnea

    HATİCE SEDA ÖZTÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    BiyokimyaYozgat Bozok Üniversitesi

    Tıbbi Biyokimya Ana Bilim Dalı

    PROF. DR. MUHAMMET FEVZİ POLAT

  4. Bulanık uzman sistem kullanarak tıkayıcı uyku apne hipopne sendromunun ciddiyet seviyesinin tahmini

    Severity degree prediction of obstructive sleep apnea hypopnea syndrome using fuzzy expert system

    CAN ZOROĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Kulak Burun ve Boğazİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    ÖĞR. GÖR. SERKAN TÜRKELİ

  5. Uyku apnesinin öngörülmesi ve dil kasının uyarılması için model geliştirilmesi

    A model development for prediction of sleep apnea and stimulation of genioglossus muscle

    AYKUT ERDAMAR

    Doktora

    Türkçe

    Türkçe

    2007

    BiyomühendislikHacettepe Üniversitesi

    Biyomühendislik Ana Bilim Dalı

    DOÇ.DR. OSMAN EROĞUL

    PROF.DR. ABDURRAHMAN TANYOLAÇ