Complexity management in visualization of very large spatial data
Çok büyük konumsal verinin görselleştirilmesinde karmaşıklık yönetimi
- Tez No: 490260
- Danışmanlar: YRD. DOÇ. DR. BURKAY GENÇ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2017
- Dil: İngilizce
- Üniversite: Hacettepe Üniversitesi
- Enstitü: Bilişim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Grafiği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 105
Özet
Veri görselleştirme görselleştirilecek verilerin boyutunun sürekli artması nedeniyle gün geçtikçe zorlaşıyor. Özellikle akıllı telefonların hemen hemen herkesin konum verisi üremesi sağladığı düşünülürse büyük coğrafi verileri bir istisna değildir. Bununla birlikte, bu tür büyük verilerin görselleştirilmesi düşük zum sevilerinde kalabalık, dağınık ve okunamaya bir haritada yapılmasını gerektirir. Zum seviyesini arttırırsak, daha fazla ayrıntı görüntüleyebiliriz, ancak görselin bütünlüğünü kaybederiz. Bu çalışmada, harita üzerinde ikili bir özelliğin görüntülenmesi durumunu değerlendiriyoruz. Verilerdeki özellik kümelerini tanımaya yönelik üç farklı yaklaşım uyguluyoruz. Daha sonra her küme iki özellik değerinden birini taşıyan bir coğrafi bölgeye denk getirilmektedir. Bu tip bir görselleştirme daha az bilgi kaybına neden olur. Kayıpları bilgi entropisi açısından ölçerek bu üç yöntemi entropi kazanımı, hafıza ve hız açısından karşılaştırıyoruz. Ayrıca, farklı görselleştirme senaryoları altında, ayrıntılı numaralandırılmış sonuçlar sağlıyoruz.
Özet (Çeviri)
Data visualization is becoming more challenging by the day due to a continuous increase in the size of data to be visualized. Geographical data is no exception, especially considering that smart phones enable almost anybody to produce location data. However, visualization of such large data has to be done on a map, which be- comes crowded, cluttered and unreadable at lower zoom levels. If we increase the zoom level, we can display more details, but we lose the completeness of visuals. In this study, we consider a binary feature to be visualized on a map. We apply three different approaches to recognize feature clusters within the data. Each cluster then corresponds to a geographical region and one of the two feature values. The visualization done like this results in a minor amount of information loss. We compare these three methods with respect to entropy gain, memory and speed by measuring this loss in terms of information entropy. Also, we provide detailed enumerative results under different visualization scenarios.
Benzer Tezler
- 3B kent modellemede genelleştirme problemleri ve ayrıntı düzeyi (LoD) kavramı
Generalization problems of 3D city modelling and level of detail (LoD) concept
AZİZE UYAR
Yüksek Lisans
Türkçe
2017
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. NESİBE NECLA ULUĞTEKİN
- Nesneye yönelik sistemlerde kusurlu sınıfların öngörülmesi için makine öğrenmesi temelli bir yöntem oluşturulması
Creating a machine learning based method for predicting defective classes in object oriented systems
FİKRET AKTAŞ
Yüksek Lisans
Türkçe
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. FEZA BUZLUCA
- Yapı bilgi modellemesi (5D) ile maliyet yönetiminin avantaj ve dezavantajlarının tespiti
Determining advantages and disadvantages of 5D BIM cost management
FARUK GÜLERSES
Yüksek Lisans
Türkçe
2018
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. ESİN ERGEN PEHLEVAN
- Automatic reconstruction and efficient visualization of 3D city models
3B şehir modellerinin otomatik üretimi ve etkili görselleştirilmesi
MEHMET BÜYÜKDEMİRCİOĞLU
Doktora
İngilizce
2023
Jeodezi ve FotogrametriHacettepe ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. SULTAN KOCAMAN
- Prediction of COVID 19 disease using chest X-ray images based on deep learning
Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini
ISMAEL ABDULLAH MOHAMMED AL-RAWE
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ADEM TEKEREK