Iris recognition by using image processing techniques
Görüntü işleme teknikleri kullanılarak iris tanıma
- Tez No: 490315
- Danışmanlar: YRD. DOÇ. DR. GÖKHAN ŞENGÜL
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: İris tanıma, Yönlü Gradyan Histogramı, Gri Düzey Eşdizimlilik Matrisi, Yerel İkili Model, Iris Recognition, Histogram of Oriented Gradient, Gray Level Co- Occurrence Matrix, Local Binary Pattern
- Yıl: 2017
- Dil: İngilizce
- Üniversite: Atılım Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 73
Özet
İris tanıma sistemi yüksek güvenilirlik özelliğinden dolayı özellikle güvenlik alanında çok önemli bir yer edinmiştir. Bir çok araştırmacı sistemin verimliliğini artırmak için iris tanıma sistemine dair öneriler sunmaktadır. Bu tezde ise, iris tanıma sisteminde yüksek performansa ulaşmak için yöntemler önerilmektedir. Bu önerilen sistemde, üç öznitelik çıkarımı yaklaşımı Histogram of Oriented Gradient (HOG) (Yönlü Gradyan Histogramı), Gray Level Co-Occurence Matrix (GLCM) (Gri Düzey Eşdizimlilik Matrisi) ve Local Binary Pattern (LBP) (Yerel İkili Model) iris görüntüsünden özellik çıkarmak için kullanılmıştır. Öte yandan, K-Nearest Neigbors (KNN) (K-En Yakın Komşular) ve Support Vector Machine (SVM) (Destek Vektör Makinesi) ise sınıflandırma aşamasında kullanılmıştır. Iris görüntüsü özellikleri çıkarma aşamasından önce bir kaç aşamadan geçer. Bunların birincisi, tüm görüntülerin yeniden boyutlandırmasını içeren ön-işleme aşaması; ikincisi ise göz görüntüsünde iris bölgesini belirleyen bölütleme aşamasıdır. Son aşama ise, iris bölgesini spesifik boyutlu uygun şekle çeviren normalizasyon evresidir. Önerilen yöntemler, iki iris veritabanında (UPOL ve IITD) test edilmiştir. Bununla birlikte, önerilen sistem HOG+KNN metodu kullandığı zaman % 100'e varan tanıma oranına ulaşmıştır.
Özet (Çeviri)
Iris recognition system has become very important, especially in the field of security, because it provides high reliability. Many researchers have suggested new methods to iris recognition system in order to increase the efficiency of the system. In this thesis, various methods have been proposed to achieve high performance in iris recognition. In the proposed system, three feature extraction approaches, Histogram of Oriented Gradient (HOG), Gray Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) are used to extract the features from iris image. On other hand, two classifiers; KNearest Neighbors (KNN) and Support Vector Machine (SVM) are used in the classification stage. The iris image passes through several stages before extracting features stage; first, pre-processing stage which includes image resizing that unifies all images' size, second, segmentation stage which determines the iris region in eye image, finally, normalization stage which converts the iris region to suitable shape with specific dimensions. The proposed methods have been applied on two iris databases, UPOL and IITD. However, the proposed system achieved recognition rate of 100% when HOG+KNN method is used.
Benzer Tezler
- Kolesterol seviyesi ile iristeki sodyum halkası arasındaki ilişkinin incelenmesi
Investigation of the relationship between cholesterol level and sodium ring in iris
BURAK KÜRŞAT GÜL
Yüksek Lisans
İngilizce
2017
Elektrik ve Elektronik MühendisliğiOndokuz Mayıs ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. ÇETİN KURNAZ
- Image processing for uncontracted ear awareness by using a deep neural network
Başlık çevirisi yok
MOHAMMED MAHMOOD ALI ALEZZI
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. OSMAN NURI UÇAN
- COOT optimizasyon algoritması temelli yapay sinir ağı modeli
Artificial neural network model based on COOT optimization algorithm
AYŞENUR ÖZDEN
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOndokuz Mayıs ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ İSMAİL İŞERİ
- Face recognition and person re-identification for person recognition
Kişi tanıma için yüz tanıma ve kişinin yeniden tanınması
EMRAH BAŞARAN
Doktora
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. MUSTAFA ERSEL KAMAŞAK
PROF. DR. MUHİTTİN GÖKMEN
- Mamografi görüntülerinde matematiksel morfolojik filtreleme ile gürültü giderme ve kontrast iyileştirme
Noise reduction and contrast enhancement with mathematical morphologic filtering in mammographic
BÜŞRA TÜRKER
Yüksek Lisans
Türkçe
2020
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DOÇ. DR. İSA YILDIRIM