Geri Dön

Neural network based feature extraction for handwritten digit recognition

El yazısı rakam tanıma için yapay sinir ağları tabanlı öznitelik çıkarma

  1. Tez No: 490329
  2. Yazar: MİNE ALTINAY GÜNLER PİRİM
  3. Danışmanlar: YRD. DOÇ. DR. HAKAN TORA, YRD. DOÇ. DR. KASIM ÖZTOPRAK
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Mühendislik Sistemlerinin Modellenmesi ve Tasarımı Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Bilim Dalı
  13. Sayfa Sayısı: 107

Özet

Bu tezde, yarı eğitilmiş sinir ağlarının gizli katman çıktı ağırlıklarının öznitelik vektörü olarak kullanılabileceği önerilmektedir. Sinir ağları örüntü tanımada sınıflandırma yapmayı sağlayan bir algotimadır. Bu çalışmada bu gerçeğe ek olarak, yarı eğitilmiş sinir ağlarının gizli katman çıktı vektörlerinin görüntünün öznitelikleri olarak kullanılmasında bir araç olarak kullanılabileceği gösterilmiştir. Sistem ana olarak 3 basamaktan oluşmaktadır: önişlemci, öznitelik çıkarıcı ve sınıflandırıcı. Herbir deneyde sadece sınıflandırıcı katmanı değişmektedir diğer iki katman tüm deneyler için default olarak kullanılmaktadır. Sıfılanırıcı olarak destekçi vektör makinaları, sinir ağları ve Öklid uzaklığı sınıflanıdırıclarından yararlanılmıştır. Önerilen sistem performansını değerlendilmesi MNIST ve USPS denektaşı verikümeleri üzerinde yapılmıştır.

Özet (Çeviri)

Bu tezde, yarı eğitilmiş sinir ağlarının gizli katman çıktı ağırlıklarının öznitelik vektörü olarak kullanılabileceği önerilmektedir. Sinir ağları örüntü tanımada sınıflandırma yapmayı sağlayan bir algotimadır. Bu çalışmada bu gerçeğe ek olarak, yarı eğitilmiş sinir ağlarının gizli katman çıktı vektörlerinin görüntünün öznitelikleri olarak kullanılmasında bir araç olarak kullanılabileceği gösterilmiştir. Sistem ana olarak 3 basamaktan oluşmaktadır: önişlemci, öznitelik çıkarıcı ve sınıflandırıcı. Herbir deneyde sadece sınıflandırıcı katmanı değişmektedir diğer iki katman tüm deneyler için default olarak kullanılmaktadır. Sıfılanırıcı olarak destekçi vektör makinaları, sinir ağları ve Öklid uzaklığı sınıflanıdırıclarından yararlanılmıştır. Önerilen sistem performansını değerlendilmesi MNIST ve USPS denektaşı verikümeleri üzerinde yapılmıştır.

Benzer Tezler

  1. Integrated segmentation and recognition of handwritten digits

    Elyazı rakamların birleştirilmiş tanıma ve bölütlendirilmesi

    HAKAN AYGÜN

  2. Transforming feedback control systems on whiteboard into Matlab via a deep learning based intelligent system

    Derin öğrenme tabanlı akıllı bir sistem ile beyaz tahtadaki geribeslemeli kontrol sistemlerinin Matlab ortamına aktarılması

    DORUKHAN ERDEM

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TUFAN KUMBASAR

  3. Yapay sinir ağları ile optik karakter tanıma

    Optical character recognition with artificial neural network

    MURATCAN UZTEMUR

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. AFİFE LEYLA GÖREN SÜMER

  4. Handwritten character recognition using cellular neural networks

    Hücresel sinir ağları kullanılarak el yazısı karekterlerin tanınması

    SELMA DURAN

    Yüksek Lisans

    İngilizce

    İngilizce

    1995

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    PROF.DR. ZAFER ÜNVER

  5. Fusion of dynamic and static features in signature verification

    İmza doğrulamada dinamik ve statik özelliklerin birleştirilmesi

    MUSTAFA SEMİH SADAK

    Doktora

    İngilizce

    İngilizce

    2022

    Bilim ve TeknolojiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NİHAN KAHRAMAN

    DR. UMUT ULUDAĞ