Geri Dön

Büyük boyutlu veri sınıflandırmada doğrusal boyut indirgeme yöntemlerinin karşılaştırılması

Comparison of linear dimensionality reduction methods on big data classification

  1. Tez No: 492430
  2. Yazar: ERAY YILDIZ
  3. Danışmanlar: YRD. DOÇ. DR. YUSUF SEVİM
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: Türkçe
  9. Üniversite: Karadeniz Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 84

Özet

Yüksek boyutlu verinin analiz edilmesi ile birçok alanda karşılaşılır. Yüksek boyutlu veri analizinde, işlem yükü ve zaman açısından verinin etkin ve hızlı bir şekilde işlenmesi zor olabilir. Bu zorluğun üstesinden gelebilmek için boyut indirgeme yöntemleri yaygın bir şekilde kullanılmaktadır. Doğrusal boyut indirgeme yöntemleri, işlem yükü ve zaman açısından doğrusal olmayan yöntemlere göre daha iyi sonuç verirler. Bu yüzden yüksek boyutu veri analizinde daha çok tercih edilmektedirler. Bu tez çalışmasında yüz ve rakam veri kümeleri kullanılarak çeşitli sınıflandırma yöntemleri üzerinde popüler doğrusal boyut indirgeme yöntemleri ve performansları incelenmiştir. Bu yöntemler, Temel Bileşen Analizi (TBA), Doğrusal Ayırma Analizi (DAA), Yerellik Koruyan İzdüşüm (YKİ), Komşuluk Koruyan Gömme (KKG), Yerellik Duyarlı Ayırma Analizi (YDAA) ve İzometrik İzdüşümdür (İZİ). Doğrusal boyut indirgeme yöntemleri kullanılarak bir veri kümesinin sınıflandırılmasında doğrulukta bir artma veya azalma olmasının veri kümesinin türüne bağlı olduğu görülmüştür. Bazı boyut indirgeme yöntemlerinin sınıflandırma doğrulukları açısından veri kümelerinin türüne göre öne çıktığı görülmüştür. Hatta veri kümelerinden elde edilen özniteliklere göre bazı yöntemlerin öne çıktığı da görülmüştür.

Özet (Çeviri)

Analysis of high-dimensional data is encountered in a lot of areas. In analysis of high-dimensional data, processing data effectively and fast may be troublesome in terms of time and process load. Dimensionality reduction methods are used commonly to overcome this trouble. Linear dimensionality reduction methods give better results than nonlinear dimensionality reduction methods in terms of time and process load. Therefore, they are prefered more in analysis of high-dimensional data. In this thesis, various popular linear dimensionality reduction methods and their performance were investigated on various classification methods by using face and digit datasets. These methods are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projection (LPP), Neighborhood Preserving Embedding (NPE), Locality Sensitive Discriminant Analysis (LSDA) and Isometric Projections(IsoP). In the classification of a dataset by using linear dimensionality reduction methods, it was seen that an increase or a decrease in accuracy depends on the kind of the dataset. And it was seen that some linear dimensionality reduction methods become prominent according to the kind of datasets in terms of classification accuracy. Also, it was seen that some linear dimensionality reduction methods become prominent according to features obtained from datasets.

Benzer Tezler

  1. Geomagnetic signal analysis based classification of earthquake magnitudes

    Jeomagnetik işaretlerin çözümlenmesine dayalı deprem şiddeti sınıflandırması

    SHABNAM DERAKHSHAN DILMAGHANI

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Deprem Mühendisliğiİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    DOÇ. DR. BEHÇET UĞUR TÖREYİN

  2. Fake news classification using machine learning and deep learning approaches

    Makine öğrenimi ve derin öğrenme yaklaşımlarını kullanarak sahte haber sınıflandırması

    SAJA ABDULHALEEM MAHMOOD AL-OBAIDI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TUBA ÇAĞLIKANTAR

  3. Reduced dimensional features for object recognition

    Nesne tanıma için boyutu indirgenmiş öznitelik vektörleri

    REYHAN KEVSER KESER

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    DOÇ. DR. BEHÇET UĞUR TÖREYİN

  4. Büyük boyutlu veriler için metasezgisel yöntemler ile öznitelik indirgemede yeni bir yaklaşım geliştirilmesi

    Developing a new approach to feature selection with metaheuristic methods for large scale data

    ESİN AYŞE ZAİMOĞLU

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NİLÜFER YURTAY

  5. Uncapacitated multiple allocation hub location problem under congestion

    Trafik sıkışıklığı altında çok atamalı kapasite kısıtsız ana dağıtım üssü yerleşim problemi

    ÇAĞRI ÖZGÜN KİBİROĞLU

    Doktora

    İngilizce

    İngilizce

    2019

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. YUSUF İLKER TOPCU