Geri Dön

Spam filtering using big data and deep learning

Büyük veri ve derin öğrenmeyi kullanarak spam filtreleme

  1. Tez No: 495964
  2. Yazar: ONUR GÖKER
  3. Danışmanlar: PROF. DR. ERDOĞAN DOĞDU, YRD. DOÇ. DR. ROYA CHOUPANİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Çankaya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 72

Özet

İstenmeyen (spam) e-postalar veya diğer oltalama (phishing) gibi sahte e-postalar, küresel ağ aracılığıyla hassas kişisel bilgi toplamayı amaçlayan veya illegal işlem yapmaya yönelik zararlı e-postalar olarak düşünülür. İnternette dolaşan birçok e-postanın içinde istenmeyen içerik bulunur ya da bu tür aldatıcı e-postalar oltalama gibi diğer sahte e-postalara benzer. Bu davranışın asıl amacı kullanıcıya fiilen zarar vermek veya toplumdan haksız çıkar sağlamak olduğundan, bu istenmeyen e-postalar aracılığıyla yapılan, kullanıcıların / müşterilerin kimlik bilgilerine yetkisiz erişimin önlenmesini derhal tespit etmek ve bu tespit için başarılı sınıflandırma yöntemleri kullanmak önemli rol oynamaktadır. İnternetteki milyarlarca e-postayı göz önünde bulundurursak, e-postaların temiz ya da sahte olup olmadığının otomatik olarak sınıflandırılması önemli bir sorundur. Bu tezde, e-postaların sahte olup olmadığıyla ilgili sınıflandırma yapmak için denetimli makine öğrenmesi ve özel olarak derin öğrenme metotları kullandık. Sonuçlarımızın da belirttiği gibi, derin öğrenmenin e-posta sınıflandırması yapmada %96 başarı oranıyla kayda değer bir etkisi vardır.

Özet (Çeviri)

Spam e-mails and other fake, falsified e-mails like phishing are considered as spam e-mails, which aim to collect sensitive personal information about the users via network or behave against authority in an illegal way. Most of the e-mails around the Internet contain spam context or other relevant spam like context such as phishing e-mails. Since the main purpose of this behavior is to harm Internet users financially or benefit from the community maliciously, it is vital to detect these spam e-mails immediately to prevent unauthorized access to email users' credentials. To detect spam e-mails, using successful machine learning and classification methods are therefore important for timely processing of emails. Considering the billions of e-mails on the internet, automatic classification of emails as spam or not spam is an important problem. In this thesis, we studied supervised machine learning and specifically“deep learning”methods to classify emails. Our results indicate that deep learning is very promising in terms of successful classification of emails with an accuracy of up to 96%.

Benzer Tezler

  1. Veri madenciliği yöntemleri ile spam filtreleme

    Spam filtering using data mining methods

    SERDAR KÜRŞAT SARIKOZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Bilimleri Ana Bilim Dalı

    DOÇ. DR. M. ALİ AKCAYOL

  2. Spam filtering using sender policy framework

    Gönderici politikası çerçevesi ile istenmeyen elektronik postaların filtrelenmesi

    DEVRİM SİPAHİ

    Doktora

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. GÖKHAN DALKILIÇ

  3. Spam e-mail detection and filtering based on an evolutionary soft computing model using neuro-fuzzy classifiers and genetic algorithms

    Sinirsel bulanık sınıflayıcı ve genetik algoritma kullanarak evrimsel yapay zeka modeli ile spam e-posta tanıma ve filtreleme algoritmaları

    ALTAN PARLAK

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBahçeşehir Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ADEM KARAHOCA

  4. Augmenting a Turkish dataset for spam filtering using natural language processing techniques

    Doğal dil işleme teknikleri kullanılarak spam filtreleme için Türkçe veri kümesinin genişletilmesi

    AYŞENUR AKSOY

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Siber Güvenlik Ana Bilim Dalı

    PROF. DR. BANU GÜNEL KILIÇ

    DOÇ. DR. CENGİZ ACARTÜRK

  5. SMS spam filtering on mobile communication

    Mobil iletişimde SMS filtreleme yöntemleri

    ISRAA HUSSAIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SIRMA YAVUZ