Geri Dön

Hybrid hyperspectral image compression method by using online dictionary learning based on sparse coding

Seyrek kodlama ve çevrimiçi sözlük öğrenme kullanılarak hibrit hiperspektral görüntü sıkıştırması

  1. Tez No: 496144
  2. Yazar: İREM ÜLKÜ
  3. Danışmanlar: PROF. DR. HALİL TANYER EYYUBOĞLU
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: İngilizce
  9. Üniversite: Çankaya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 114

Özet

Bu tezde, seyrek kodlama tabanlı çevrimiçi sözlük öğrenme yaklaşımını literatürde ilk kez hiperspektral görüntülerin sıkıştırılması için adapte eden hibrit bir yöntem önerilmiştir. Seyrek kodlama tabanlı çevrimiçi sözlük öğrenme kullanılarak hiperspektral görüntülerin sıkıştırılması için hibrit bir yöntem olarak isimlendirilmiştir. Bu yöntemde, çeşitli seyrek temsil algoritmaları seyrek kodlama problemini çözmek amacıyla kullanılmıştır. Farklı seyrek temsil algoritmaları ile diğer sıkıştırma algoritmaları oran-bozulma performansları açısından karşılaştırılmışlardır. Bilgi koruma performansları da anomali sezimi uygulaması ile ayrıca ölçülmüştür. Deneysel sonuçlar kanıtlıyor ki bit hızı arttıkça yakınlık bazlı eniyileme ve kör sıkıştırmalı örnekleme algoritmalarına ait sıkıştıma performansları diğer algoritmalardan üstün olmaktadır.

Özet (Çeviri)

In this thesis a hybrid method is proposed, where an online dictionary learning approach based on the sparse coding scheme is adapted to compress hyperspectral images for the first time in the literature. In this method, various sparse representation algorithms are used to solve the sparse coding problem. Among these sparse representation algorithms, proximity based optimization algorithms and blind compressive sensing algorithms are the most recent and popular ones in the literature. Rate-distortion performances of different sparse representation algorithms are compared to those of the other compression algorithms. Besides the rate-distortion performances, the information preservation performances are also evaluated by the anomaly detection application. The experimental results verify that compression performances of proximity based optimization algorithms and blind compressive sensing algorithms are superior to those of other algorithms as the bit rate increases.

Benzer Tezler

  1. Hyperspectral image compression using sparse representations and wavelet transform based spectral decorrelation

    Seyrek gösterimler ve dalgacık dönüşümüne dayalı izgel ilintisizleştirme kullanarak hiperspektral görüntü sıkıştırma

    HAYDER JAWDHARI

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    DOÇ. DR. BEHÇET UĞUR TÖREYİN

  2. Derin öğrenme yöntemleri kullanarak hiperspektral imgelerin sınıflandırılmasına yönelik yeni yaklaşımlar

    New approaches for hyperspectral image classification using deep learning

    HASAN BADEM

    Doktora

    Türkçe

    Türkçe

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ALPER BAŞTÜRK

  3. Geliştirilmiş katmanlı uzay yerleştirme yöntemleri kullanılarak hiperspektral görüntülerin sınıflandırılması ve görselleştirilmesi

    Classification and visualization of hyperspectral image using enhanced manifold embedding methods

    MEHMET ZAHİD YILDIRIM

    Doktora

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ CANER ÖZCAN

    PROF. DR. OKAN ERSOY

  4. Hiperspektral görüntülerde eser miktarda kimyasal madde tespiti

    Detection of trace amount chemical substances in hyperspectral images

    ŞAFAK ÖZTÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. SENİHA ESEN YÜKSEL ERDEM

  5. Classification of hyperspectral images with ensemble learning methods

    Hiperspektral görüntülerin topluluk öğrenme yöntemleri ile sınıflandırılması

    UĞUR ERGÜL

    Doktora

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÖKHAN BİLGİN