Geri Dön

An intrusion detection approach based on binary particle swarm optimization and Naive Bayes

İkili parçacık sürüsü optimizasyonuna ve Naive Bayes'e dayalı bir saldırı tespiti yaklaşımı

  1. Tez No: 499494
  2. Yazar: ABDULLAHI HUSSEIN ABDULLAHII
  3. Danışmanlar: YRD. DOÇ. DR. MESUT GÜNDÜZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Selçuk Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 61

Özet

Saldırı tespit sistemleri (IDS) yıllardır bilgisayar sistemlerine karşı problemli ya da zararlı faaliyetlerin tespitine yardımcı olmak için kullanıldı. Bu nedenle, birçok araştırmacı, saldırı tespit problemlerinin zorluklarıyla başa çıkmak için makine öğrenme yöntemleri ve doğadan esinlenilmiş algoritmalar gibi yöntemlerin bir kombinasyonuyla IDS'yi önerdi. Bu çalışmada daha iyi bir performans elde etmek ve doğruluk kazanmak için Naive Bayes ve İkili Parçacık Sürü Optimizasyonu birleştirilmiştir. Günümüzde, muazzam veri boyutlarından dolayı verilerin sınıflandırılması çok zor bir görev haline gelmiştir. Bu yüzden, özellik seçim yöntemleri bu zorlukların üstesinden gelmek, veri kümesi sınıflandırmasında daha fazla doğruluk üretmek ve büyük verilerin boyutsallığını azaltmak için kullanılmıştır. Parçacık sürüsü optimizasyonu (PSO), sezgisel bir optimizasyon tekniğidir ve optimum bir çözüm aramak için bir özellik seçimi yöntemi olarak kullanılabilen bir algoritmadir. İkili PSO, Naive Bayes sınıflandırma algoritmasının doğruluğunu geliştirmek için önemli özellikleri seçmek amacıyla kullanılmıştır. Bu çalışmanın amacı, özellik seçimi için İkili Parçacık Sürüsü Optimizasyon teknikleri ve veri sınıflandırması için Naive Bayes yöntemi uygulamaktır. Araştırma ayrıca, İkili PSO ve Naive Bayes algoritmalarının performansını ve sonuçlarını karar ağacı, rasgele orman sınıflamaları ile karşılaştırmayı ve hangi algoritmanın hem kalitede hem de doğrulukta iyi performans gösterdiğini bulmayı amaçlamıştır. Bu yöntemlerin performans değerlendirmesinde, değerlendirmede NSL-KDD veri seti kullanılmıştır. Önerilen modelin sonucu diğer modellere kıyasla başarılı performans sergilemiş, daha sağlıklı bir sonuç ortaya koyacağı tespit edilmiştir.

Özet (Çeviri)

Intrusion detection systems (IDS) was used to be assisting in the detection of mischievous or harmful activities against computer systems for decades. Thus, a lot of researchers have suggested the IDS with a combination of methods like machine learning methods and nature-inspired algorithms to deal with difficulties of intrusion detection problems. In this study, it is combined Binary Particle Swarm Optimization (BPSO) and Naive Bayes to achieve better performance and attain accuracy. Currently, the enormous growth of data and the classification of the data have become a very challenging task. So, the feature selection methods are used to reduce the dimensionality of the enormous data in order to produces better accuracy in the classification. Particle Swarm Optimization is one of the evolutionary algorithms and a computational technique that can be used as a feature selection method to search an optimal solution. BPSO had been used for feature selection for choosing important features to improve the accuracy of the Naive Bayes classification algorithm. The objective of this study is to apply BPSO techniques for feature selection and Naive Bayes method for data classification, the research also aimed to compare performance and the results of the algorithms of BPSO and Naive Bayes with Decision Tree and Random Forest classifications to find out which algorithm performed well both in quality and accuracy. NSL-KDD data has been used in the evaluation and assessment of the performance of these methods, and the result of the proposed model had provided better classification accuracy and better performance than the other models

Benzer Tezler

  1. Öznitelik seçimi özellik bileşimine dayanan uyarlamalı sinirsel-bulanık çıkarım sistemi üzerinden ağ saldırılarının tespiti

    Detection of network intrusions through an adaptive neuro-fuzzy inference system based on feature fusion of attribute selection

    CİHAN ÇINAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Mühendislik BilimleriGazi Üniversitesi

    Bilgi Güvenliği Mühendisliği Ana Bilim Dalı

    PROF. DR. İBRAHİM ALPER DOĞRU

  2. IoT ağları için yeni bir saldırı tespit sistemi tasarımı

    Design of a new intrusion detection system for IoT networks

    TUĞBA ULUSOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    PROF. DR. ÜNAL ÇAVUŞOĞLU

  3. Can veri yolu haberleşme protokolüne sahipelektrikli araçlara yapılan siber saldırıları derinöğrenme yöntemleri ile tespiti

    Detection of cyber attacks on electric vehicles withcan-bus communication protocol using deep learni̇ngmethods

    EMRE TÜFEKCİOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik MühendisliğiBursa Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. HAKAN GÜRKAN

    PROF. DR. CEMAL HANİLÇİ

  4. Ses olay tespit problemine derin öğrenme tabanlı çözümler

    Utilizing footstep sound event detection by using cnn techniques for assuring property security

    FURKAN YUSUF YAVUZ

    Doktora

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. NEJAT YUMUŞAK

  5. Kanal tabanlı özellik temsili ve derin öğrenmeye dayalı uykululuk sınıflandırması

    Drowsiness classification based on channel-based feature representation and deep learning

    MUSTAFA RIFAT ÇELİK

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. ZÜMRAY ÖLMEZ