Improving efficiency of the solutions for class imbalance problems using data mining techniques
Veri madenciliği tekniklerini kullanarak sınıf dengesizlik problemleri için çözümlerin verimliliğinin artırılması
- Tez No: 513123
- Danışmanlar: DR. ÖĞR. ÜYESİ BETÜL BOZ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: Marmara Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 44
Özet
Klinik karar almada yanlış bir teşhis hastanın yaşamına zarar verebilir. Bu sebeple veri madenciliğinin sağlık sektörüne uygulanmasındaki kayda değer artış ölçüm doğruluğunu klinik teşhis öngörüsünde kritik performans ölçümlerinden biri haline getirmektedir. Bununla birlikte sınıf dengesizliği problemi yaygın olarak klinik veri kümelerini sıkıntıya sokmaktadır. Bu hal, veri kümelerindeki sınıflar eşitsiz biçimde ortaya konduğunda meydana gelmektedir. Bu durum algoritmaların verilerle overfitting uyuşmazlığına sebep olan ve klinik öngörüde zayıf doğruluk veren sinirsel ağ algoritmalarıının işlerliğini azaltmaktadır. Torbalama metodu sınıf dengesizliği problemine yaklaşım becerisine sahip ve ölçme doğruluğunu artıran yaygın kümeleme metodlarından biridir. Bunun yanısıra torbalama metodu kararsız kümeleyicilerde olumlu biçimde işlemektedir. Kararsız kümeleyicilerden biri de sinirsel ağlardır. Bu sebeple bu çalışmada, yukarıdaki probleme yaklaşım konusunda torbalama tabanlı sinirsel ağ öne sürülmektedir. Deneysel sonuçlara göre bu yöntem doğru ölçmede konvansiyonel sinirsel ağdan daha iyi sonuç vermekte ve klinik teşhis öngörüsünde sınıf dengesizliği problemine başarılı bir yaklaşım sergileyebilmektedir.
Özet (Çeviri)
In clinical decision making, an inaccurate diagnosis might harm patient's life. Therefore, the significant growth of data mining's implementation in healthcare industry takes the accuracy into one of the critical performance measures for clinical diagnosis prediction. However, clinical datasets commonly suffer from class imbalance problem. It occurs when the classes in the datasets are unequally presented. This situation degrades the performance of neural network algorithms which leads the algorithms to overfit the data and have poor accuracy in clinical prediction. Bagging method is one of the popular ensemble methods that is capable to address class imbalance problem and improve the accuracy. Furthermore, bagging method performs well with unstable classifiers. One of the unstable classifiers is neural networks. Therefore, bagging based neural network is proposed to address the above problem. From the experimental results, the proposed method achieves better accuracy than the conventional neural network and successfully addresses class imbalance problem on clinical diagnosis predictions.
Benzer Tezler
- Efficient deep learning approaches for signal and image analysis applications
Sinyal ve görüntü analizi uygulamaları için verimli derin öğrenme yaklaşımları
ONUR CAN KOYUN
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
PROF. DR. BEHÇET UĞUR TÖREYİN
- Derin öğrenme algoritmaları ile personel geri bildirimlerinin sınıflandırılması ve analizi
Classification and analysis of employee feedback with deep learning algorithms
GÖKHAN YİĞİDEFE
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SERAP ÇAKAR KAMAN
- Kanal tabanlı özellik temsili ve derin öğrenmeye dayalı uykululuk sınıflandırması
Drowsiness classification based on channel-based feature representation and deep learning
MUSTAFA RIFAT ÇELİK
Yüksek Lisans
Türkçe
2025
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ZÜMRAY ÖLMEZ
- Improved bone marrow cell classification using enhanced capsnet and enhanced U-net: Addressing data imbalance and large-scale data
Geliştirilmiş kapsül ağı ve U-net kullanarak kemik iliği hücrelerinin iyileştirilmiş sınıflandırılması: Veri dengesizliği ve büyük ölçekli veri sorunlarına çözüm
AMINA FARIS ABDULLAH AL-RAHHAWI
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NESRİN AYDIN ATASOY
- Geleneksel üretim sistemlerinden tam zamanında üretim sistemine dönüşümünün tasarlanmasında simülasyon yaklaşımı
Başlık çevirisi yok
TİJEN ERTAY