Comparison of prediction algorithms for student performance prediction
Öğrenci performansının öngörülmesi için tahmin algoritmalarının karşılaştırılması
- Tez No: 522756
- Danışmanlar: Assist. Prof. ZİYA KARAKAYA, PROF. DR. ALİ YAZICI
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: Atılım Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Yazılım Mühendisliği Bilim Dalı
- Sayfa Sayısı: 95
Özet
Bu tez, Atılım Üniversitesi Bilgi Sistemlerinde barındırılan öğrenci bilgilerinin oluşturduğu veri kümelerini kullanarak altı farklı makine öğrenmesi algoritmalarının öğrenci performansı tahminine uygulanmasını incelemektedir. Bu öğrenme algoritmaları şu dört ölçü kullanılarak karşılaştırılmıştır: Doğruluk, Kesinlik, Geri Çağırma ve F-ölçüsü. Çalışmada aynı anda çok sayıda ders başarısı tahmininin, kullanılan sınıflandırıcıların performansıyla doğrudan veya ters orantılı olup olmadığına da bakılmıştır. Ayrıca; veri ön işlemenin yanı sıra, Korelasyon temelli Özellik Seçimi (CFS)'nin öğrenme algoritmaları üzerindeki etkilerinin ölçümü gerçekleştirilmiştir. Kullanılan algoritmalar şunlardır: Naif Bayes, Lojistik Regresyon, Çok Katmanlı Perceptron, SMO (Destek Vektör Makineleri), IBk (K-En Yakın Komşu) ve J48 (C4.5 Karar Ağacı). Naïve Bayes ve IBk, karşılaştırılan algoritmalar arasında en iyi sonuçlar vermiştir. Sonuçlar, birlikte tahmin edilen derslerin sayısı arttıkça tahmin performansının azaldığını da göstermektedir. Veri ön işleme ve CFS'nin, genellikle makine öğrenimi algoritmalarının performansını artırdığı görülmüştür.
Özet (Çeviri)
This thesis investigates the application of six machine learning algorithms to student performance prediction, using datasets made up of only students information available at the Atilim University administrative systems. In addition, these learning algorithms were compared using four measures: Accuracy, Precision, Recall and F-measure. The study also investigates whether the number of courses predicted together is directly or inversely proportional to the performance of the classifiers used. A measure of the effects of data preprocessing as well as Correlation based Feature Selection (CFS) on the learning algorithms was also conducted, respectively. The algorithms used are: Naive Bayes, Logistic Regression, Multilayer Perceptron, SMO (based on Support Vector Machines), IBk (K-Nearest Neighbor) and J48 (C4.5 Decision Tree). Naïve Bayes and IBk proved to be the best among the compared algorithms. The results also show that as the number of courses being predicted together increases, the prediction performance decreases. Data preprocessing and CFS are also found to generally improve the performance of the machine learning algorithms.
Benzer Tezler
- Makine öğrenimi algoritmalarını kullanarak öğrenci akademik performans tahmini
Student academic performance prediction using machine learning algorithms
AIGERIM SULTANALI
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilişim Sistemleri Ana Bilim Dalı
PROF. DR. HASAN ÇAKIR
- Farklı hisse senedi piyasalarında işlem gören hisse senedi getirilerinin oynaklığının tahminlenmesi ve oynaklık modellerinin öngörümleme performanslarının karşılaştırılması
The prediction of volatility of stock returns in different stock markets and comparison forecasting performances of volatility models
EMRAH GÜLAY
Doktora
Türkçe
2013
EkonometriDokuz Eylül ÜniversitesiEkonometri Ana Bilim Dalı
YRD. DOÇ. DR. HAMDİ EMEÇ
- Predicting students professional identity using datamining techniques
Öğrencilerin veri madenciliği tekniklerini kullanarak profesyonel kimlik tahmini
RAYA MOHAMMED MAHMOOD
Doktora
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SEFER KURNAZ
- Makine öğrenmesi yöntemleri kullanılarak ortaokul öğrencilerinin başarılarının değerlendirilmesi
Evaluation of middle school students' achievements using machine learning methods
ZEYNEP GÖKMEN
Yüksek Lisans
Türkçe
2024
Eğitim ve ÖğretimİSTANBUL TOPKAPI ÜNİVERSİTESİYazılım Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ALİ HAYDAR ESER
- Uyum gösteren cepheler: Bir meta analizi
Adaptive facades: A meta analysis
SELİN KARAAĞAÇ
Yüksek Lisans
Türkçe
2020
Mimarlıkİstanbul Teknik ÜniversitesiMimarlık Ana Bilim Dalı
DOÇ. DR. İKBAL ÇETİNER