Distributed decision algorithms for fair resource allocations in collaborative networks
Başlık çevirisi mevcut değil.
- Tez No: 523287
- Danışmanlar: Dr. SANG WON YOON
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Endüstri ve Endüstri Mühendisliği, Computer Engineering and Computer Science and Control, Industrial and Industrial Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: State University of New York at Binghamton
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 102
Özet
Özet yok.
Özet (Çeviri)
This research addresses distributed decisions for to enhance fairness and total pro t among collaborative networked enterprises (CNEs). The arbitrary nature of demand and capacity patterns in manufacturing/service enterprises require to form a CNE with other enterprises to overcome such uncertainties. In any CNE, the collaboration process often leads to a dilemma: the need to choose between fairness and total pro t. The aim of this research is to investigate a new sharing protocol (SP) to control CNEs and to propose an algorithm that attempts to increase optimal weights of fairness while maintaining total pro t. Most CNE research studies have been designed under a centralized SP. However, centralized SPs appear to be unfeasible or inadequate because of enterprises' operating environments and local objectives; therefore, each CNE requires a distributed decision-making mechanism. Furthermore, market globalization and competition necessitate rapid responses to market changes and give rise to two major concerns about CNEs: 1) how can collaborations be rendered re-con gurable to dynamically capture and adapt to market patterns; and 2) how can the resources of all CNEs be utilized fairly among enterprises, ensuring mutual bene ts? Therefore, Dynamic-Distributed Sharing Protocol (D2SP), which is inspired by the principles of Collaborative Control Theory and the Contract Net Protocol, is proposed to address these concerns. Under the assumptions used in this research, experimental results and analyses indicate that D2SP reduces the number of messages and inventory cost of shared amounts by up to 30%, and 9%, respectively and total pro t and fairness index are increased by up to 15% and 10%, respectively. The proposed algorithm in which Jain's fairness index and the generalized -fair concept are utilized, is tested with conceptual heterogeneous and homogeneous CNs (HeCNs and HoCNs, respectively) based on the enterprise capacity. Experimental results indicate that fairness increases up to 28% in HeCN and 32% in HoCN while maintaining the current total pro t of a CN. The gap between two CNEs, which are the most bene ted and least bene ted enterprises in terms of total pro t, lost sale cost, and inventory cost, can reduce up to 57%, 54%, and 78%, respectively. Therefore, the proposed algorithm can minimize the deviation between most and least bene cial CNEs in terms of total pro t, lost sale cost, and inventory cost.
Benzer Tezler
- Makina öğrenmesi teknikleri ile hukuki alacak tahsilat kuruluşu dosya kapatılabilirlik tahmini ve atama modeli ile dosya ataması: Telekomünikasyon sektörü örneği
Predicting case closeability of legal debt collecti̇on agency with machine learni̇ng teqniques and assignment of cases with closibility based assignment model: A case study on telecomunication sector
NİLÜFER ALTINOK
Yüksek Lisans
Türkçe
2022
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. BAŞAR ÖZTAYŞİ
- A new framework for decentralized social networks: Harnessing blockchain, deep learning, and natural language processing
Merkezsiz sosyal ağlar için yeni bir çerçeve: Blok zinciri, derin öğrenme ve doğal dil işlemeyi kullanmak
AMIR AL KADAH
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiYazılım Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ DENİZ BALTA
- Makine öğrenmesi teknikleri ile tahsilat davranışı tahmini: telekomünikasyon sektörü örneği
Prediction of debt collection behaviour with machine learning techniques: A case study on telecommunication company customers
ELİF EKİZ
Yüksek Lisans
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. BAŞAR ÖZTAYŞİ
- Effect of overlay topology on peer-to-peer data dissemination and buffer management
Görevdeş ağlarda topolojinin bilgi yayılımı ve ara bellek yönetimine etkisi
EMRE İSKENDER
Yüksek Lisans
İngilizce
2009
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKoç ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. MİNE ÇAĞLAR
DOÇ. DR. ÖZNUR ÖZKASAP
- Çok işlemcili gerçek zamanlı sistemler için sanal ihmal edilebilirlik güdümlü iş sıralama
Virtual laxity driven scheduling for multi-processor real time systems
GÖKHAN SEÇİNTİ
Yüksek Lisans
Türkçe
2012
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. DENİZ TURGAY ALTILAR