Geri Dön

Deep learning applications in Seizure detection

Nöbet tespitinde derin öğrenme uygulamaları

  1. Tez No: 540318
  2. Yazar: YEZI ALI KADHIM KADHIM
  3. Danışmanlar: PROF. DR. ALOK MISHRA, DOÇ. DR. LALİT GARG
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 53

Özet

Bu tezde, Derin otomatik kodlayıcı ve güç spektral yoğunluğuna dayalı yeni bir yöntem önerilmiştir. ilk, giriş verileri, her bir veri satırı için sinyalin güç spektral yoğunluğunu ölçerek özellik çıkarımı için güç spektral yoğunluğu kullanılarak analiz edilir. Üretilen çıktı, boyutu azaltmak ve yüksek seviyeli özellikler elde etmek için ilk Otomatik kodlayıcıya girdi olur. İlk otomatik kodlayıcının çıkışı, özelliklerin sayısını azaltmak ve yüksek seviyeli özellikler elde etmek için ikinci otomatik kodlayıcıya girdi olur. Ayrıca, bu özellikler iki gruba ayrılır: SoftMax sınıflandırıcı kullanılarak normal ve anormal. Son olarak, iki otomatik kodlayıcı ve SoftMax, sınıflandırma doğruluğunu geliştirmek için geri yayılım algoritması kullanılarak yığılmış ve eğitilmiştir. Önerilen yöntem, bu dosyada sunulan ortak yöntemlerle karşılaştırıldığında tatmin edici sonuçlar verir. Burada, Otomatik kodlayıcıların sayısı verilerin yanı sıra boyutun davranışına da bağlıdır. Önerilen yöntem, epilepsi seri tespitinde yaygın olarak kullanılan veri setleri ile test edilmiş ve elde edilen sonuçlar, güçlü ve zayıf yönleri belirlemek amacıyla bu alandaki diğer ve en önemli çalışmalarla karşılaştırılmıştır.

Özet (Çeviri)

In this thesis, a new method is proposed based on deep auto encoder and power spectral density. First, the input data is analyzed using power spectral density for feature extraction by measuring the power spectral density of the signal for each row of data. The produced output becomes input to the first Auto encoder to reduce the dimension and extracted high level features. The output of first auto-encoder become input to the second auto-encoder also to reduce number of features and extracted high level features. In addition, these features are classified into two groups: normal and abnormal by using SoftMax classifier. Finally, the two auto-encoders and SoftMax stacked and trained by using backpropagation algorithm to improve the classification accuracy. The proposed method gives satisfactory results when compared with the common methods presented in this filed .Here, the number of Auto encoders depend on the behavior of the data as well as the dimension. The proposed method is tested with commonly used datasets in the epilepsy serius detection, and the results obtained are compared with other and most prominent works in this field in order to determine the strengths and weaknesses.

Benzer Tezler

  1. Optimizing emotion recognition in EEG signals using optimization algorithm and deep neural network

    Optimizasyon algoritması ve derin nöral ağı kullanarak EEG sinyallerinde duygu tanıma optimize edilmesi

    RADHWAN AL-JANABI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBahçeşehir Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ÖVGÜ ÖZTÜRK ERGÜN

  2. EEG signal analyzing based on discrete wavelet transform and optimized LSTM technique

    Ayrık dalgalet dönüşümü ve optimize LSTM tekniği üzerine EEG sinyal analizi

    LUMA ABDULKAREEM HUSSEIN AL-DULAIMI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. SEFER KURNAZ

  3. Artificial neural networks for electroencephalogram classification

    Başlık çevirisi yok

    ALI MOHSIN LATEEF ALKHAFAJI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilim ve TeknolojiAltınbaş Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    PROF. DR. OSMAN NURİ UÇAN

  4. Electroencephalography (EEG) sinyal sınıflandırılmasında sinir-evrimi yaklaşımı

    NeuroEvolutionary approach to electroencephalography (EEG) signal classification

    ERDEM AYBEK

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolPamukkale Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MERİÇ ÇETİN

  5. Machine learning algorhtims for heart rhythm classification

    Makine öğrenme algoritmaları kalp ritminin sınıflandırılması

    HUSSEIN ALI MOHAMMED MOHAMMED

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    PROF. DR. GALİP CANSEVER