Kısmi ve tam yüz görüntüleri üzerinde makine öğrenmesi yöntemleriyle yüz ifadesi tespiti
Facial expression recognition on partial and whole face images with machine learning methods
- Tez No: 552658
- Danışmanlar: PROF. DR. CEMİL ÖZ
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 88
Özet
Yüz ifadeleri insanlar arası iletişimin önemli bir parçası olduğu gibi insan makine etkileşiminde de önemli rol oynamaktadır. Suçlu tespiti, sürücü dikkatinin izlenmesi, hasta takibi gibi önemli konularda karar vermede yüz ifadesi tespiti kullanılmaktadır. Bu sebeple, yüz ifadelerinin sistemler aracılığı ile otomatik tespiti popüler bir makine öğrenmesi çalışma alanıdır. Bu tez çalışmasında yüz ifadesi sınıflandırma çalışmaları yapılmıştır. Yapılan yüz ifadesi tespiti uygulamaları genel olarak iki başlık altında toplanabilir. Bunlardan ilki kısmi yüz görüntülerinin klasik makine öğrenmesi yöntemleriyle analizi ve ikincisi ise tüm yüz görüntülerinin derin öğrenme yöntemleri ile analiz edilmesidir. Geliştirilen ilk uygulamada, yüz görüntülerinden duygu tespiti için literatürdeki çalışmalardan farklı olarak sadece göz ve kaşların bulunduğu bölgeler kullanılarak sınıflandırma yapılmış ve yüksek başarım elde edilmiştir. Önerilen bu yöntem sayesinde yüz ifadesi tespitleri alt yüz kapanmalarından veya ağız hareketlerinden etkilenmeyecek, gürbüz özniteliklerin seçimi ile daha az öznitelikle sınırlı kaynaklara sahip cihazlarda çalışabilecek niteliktedir. Ayrıca önerilen sistemin genelleme yeteneğinin yüksek olduğu karşılaştırmalı olarak deneysel çalışmalarla ortaya konulmuştur. Tez kapsamında yapılan diğer yüz ifadesi sınıflandırma çalışmaları tüm yüz görüntüleri kullanılarak derin öğrenme yöntemleri ile gerçeklenmiştir. Önerilen yaklaşımlardan birisi yüz bölütleme çalışmasıdır. Bu çalışmalar ile elde edilen bölütlenmiş görüntüde yüz ifadesi ile ilgili öznitelikler korunmakta, kişisel herhangi bir veri saklanmamakta ve böylece kişisel gizlilik de korunmuş olmaktadır. Ayrıca bölütlenmiş görüntü ile orijinal yüz görüntüsünün birleşimi; yüz ifadesi için önemli olan kaş, göz ve ağız bölgelerine odaklanılarak yüz ifadelerinin tanınma başarımının arttırılması sağlamıştır.
Özet (Çeviri)
Facial expressions are important for interpersonal communication also play an important role in human machine interaction. Facial expressions are used in many areas such as criminal detection, driver attention monitoring, patient monitoring. Therefore, automatic facial expression recognition systems are a popular machine learning problem. In this thesis study, facial expression recognition studies are performed. In general, the applications of facial expression recognition can be grouped under two topic in this thesis: analysis of partial facial images with classical machine learning methods and analysis of whole facial images with deep learning methods. In the first application, classification of the facial expressions from facial images was performed using only eye and eyebrows regions. This approach is different from the studies which are studied facial expression recognition in the literature and high success rate was achieved. With this approach, proposed system is more robust for under facial occlusions and mouth motion during speech. Further, according to our experiments, the generalization ability of the proposed system is high. In this thesis, the rest of the facial expression recognition applications was developed with whole face images using deep learning techniques. One of the proposed methods is segmentation of facial parts with CNN. After segmentation process, facial segmented images were obtained. With this segmented images, personal privacy is protected because the segmented images don't include any personal information. Also, the success rate of the classification was increased with combining original raw image and segmented image. Because; eyes, eyebrows and mouth are crucial for facial expression recognition and segmented images have these areas. Therefore, the proposed CNN architecture for classification forces the earlier layers of the CNN system to learn to detect and localize the facial regions, thus providing decoupled and guided training.
Benzer Tezler
- Mathematical model-based clinical decision support system algorithm design study that can support the diagnosis of celiac disease
Çölyak hastalığının teşhisine destek verebilecek matematik model tabanlı kds algoritması tasarımı
ELİF KESKİN BİLGİÇ
Doktora
İngilizce
2024
Mühendislik Bilimleriİstanbul Üniversitesi-CerrahpaşaBiyomedikal Mühendisliği Ana Bilim Dalı
DR. İNCİ ZAİM GÖKBAY
DOÇ. DR. YUSUF KAYAR
- Age and gender classification from ear images
Kulak imgelerinden yaş ve cinsiyet sınıflandırma
DOĞUCAN YAMAN
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. HAZIM KEMAL EKENEL
- Classification of chest X-rays by divergence-based convolutional neural network
Diverjans temelli evrişimsel ağ ile akciğer röntgen görüntülerinin sınıflandırılması
MUHAMMED NUR TALHA KILIÇ
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. TAMER ÖLMEZ
- A distributed human identification system for indoor environments
Kapalı ortamlar için dağıtık mimarili insan tanıma sistemi
EMRE SERCAN ASLAN
Yüksek Lisans
İngilizce
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. GÖKHAN İNCE
- Ortognatik cerrahi hastalarının stereofotogrametrik kayıtları üzerinde ebeveynlerin, ortodontistlerin ve cerrahların asimetri algılarının değerlendirilmesi
Evaluation of asymmetry perceptions of parents, orthodontists and surgeons on stereophotogrammetric records of orthognathic surgical patients
İREM GÜNAY
Diş Hekimliği Uzmanlık
Türkçe
2017
Diş HekimliğiKırıkkale ÜniversitesiOrtodonti Ana Bilim Dalı
PROF. DR. FERABİ ERHAN ÖZDİLER