Nonlineer su dalgaları
Başlık çevirisi mevcut değil.
- Tez No: 55697
- Danışmanlar: PROF.DR. MEVLUT TEYMUR
- Tez Türü: Yüksek Lisans
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1996
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 48
Özet
ÖZET Bu çalışmada, küçük fakat sonlu genlikli su dalgalarının yayılması ile ilgili sınır değer problemlerinin asimptotik çözümleri incelenmiştir. Çalışma beş bölümden oluşmaktadır. İlk bölümde, önce sürekli ortamlarda dalga yayılması problemlerinin, daha sonra da su dalgalan ile ilgili problemlerin tarihi gelişimi kısaca özetlenmiştir. Su dalgalan incelenirken akışkanın yoğunluğunun hareket esnasında değişmediği ve akımın irrotasyonel (çevrisiz) olduğu kabul edilir. İkinci bölümde, bu varsayımlar dikkate alarak viskoz olmayan sıkışmaz bir akışkanın çevrisiz hareketini yöneten temel denklemler verilmiştir. Bu denklemler birinci mertebe bir kuazilineer denklem sistemi teşkil ederler. Bu bölümde, denklem sistemine eşlik eden akışkanın serbest yüzeyindeki kinematik ve dinamik sınır koşullan ve akışkanı sınırlayan bir ara yüzeydeki sınır koşulu da türetilmiştir. Serbest yüzeydeki dinamik sınır koşulunda yüzey geriliminin (kapilariterin) de etkisi gözönüne alınmıştır. Bu koşullardan ilk ikisi nonlineerdir. Bilindiği gibi, nonlineer problemlerde çözümlerin süperpozisyonu ilkesi geçerli olmadığı için, böyle problemlerin çözümlerini inşa etmek için lineer analizin yöntemleri direkt olarak uygulanamazlar. Bu nedenle, bu tip problemler için değişik yöntemler türetilmiştir. Bunlardan önemli bir grubu asimptotik yöntemler oluşturmaktadır. Üçüncü bölümde, lineer harmonik dalgaların yayılması ele alınmış ve su dalgalarının nasıl sınırlandırıldığı özetlenmiştir. Dördüncü bölümde küçük fakat sonlu genlikli su dalgalarının yayılması ele alınmıştır. Bu problemin yaklaşık çözümü daha önce dissipatif veya dispersif nonlineer ortamlarda dalga yayılması problemleri için geliştirilen bir asimptotik yöntem kullanılarak inşa edilmiştir. Beşinci bölümde ise küçük fakat sonlu genlikli su dalgalarının modülasyonu incelenmiştir. Burada, kapilariterin de etkisi gözönüne alınmış ve daha önce tabakalı elastik ortamlarda uygulanan bir asimptotik teknik kullanılarak problemin çözümü inşa edilmiştir. Nonlineer dalga modülasyonunu asimptotik olarak karakterize eden nonlineer Schrödinger (NLS) denklemi elde edilmiş ve bu denklemin katsayılarının çeşitli limitleri alınarak, limit problem için daha önceki çalışmalarda elde edilen NLS denklemlerinin katsayılarının bulunabileceği gözlemlenmiştir, i iv
Özet (Çeviri)
SUMMARY NONLINEAR WATER WAVES In this work, we have considered the propagation of small but finite amplitude (weakly nonlinear) water waves on a liquid layer of uniform depth. When investigat ing the water waves, the fluid is assumed to be inviscid and incompressible and that the motion is irrotational. The two dimensional motion of such a fluid may be described by the Laplace equation for the velocity potential (x,y,t) ; - f + - f- = 0 for -oo, at y = T!(x,t) (2) and A p(1 + *lx) where T is the surface tension, p is the density and g is the acceleration due to gravity. If the boundary y = -h is assumed fixed, since the flow is inviscid then the kinematical boundary condition here is written as y=0 at' y = -h (4) First, the propagation of weakly nonlinear waves is considered. This is in fact just the problem from which the Korteweg-deVries equation was first derived at the end of the last century [13]. It is remarkable that there are so many examples ranging from classical water waves and lattice waves to plasma waves, which are governed by this simple nonlinear equation in an asymptotic sense [14]. In this work, this old problem is investigated by employing a general perturbation method which is introduced in [16] to study wave propagation in dissipative or dispersive nonlinear media.Since we consider waves of long wavelength, the effect of surface tension will be ignored. To express the equations and boundary conditions in dimensionless form, we define the following non-dimensional quantities ; x=Lx, y = hy, t = -t, = cL, Ti = hri, c = -Jgh (5) c where L is a characteristic wave length. In terms of the non-dimensional quantities (1),(2),(3) and (4) are rewritten as 8»£t + £t = 0 (6) ox2 öy2 K ' 52 - 1+ - L- l + ti- - - - =- - + t\ - r +- ti - t at y = 0 (7) lot dxdx 'cxSxSyJ dy 'öy2 2 ' dy3 J K ' db 52dyj dy dy f =0 at y = -1 (9) dy Here the boundary conditions (2) and (3) at y = Ti(x,t) are expanded around the undisturbed free surface y = 0 to obtain (7) and (8) respectively. Note that, the bar“-”over the non-dimensional quantities is omitted in (6),(7),(8) and (9). Also the quantity 5 is defined as 8 = h/L (10) which measures the ratio of vertical to horizontal length scales. Since the propagation of weakly nonlinear waves are considered t| and § are expanded the following asymptotic power series in a small parameter e>0 which measures the degree of nonlinearity ; îl = İ>X(x,t), ? = !>“?”(***) (11) n=1 n=1 Here it is also assumed that 82 = 0(s) as e ->? 0 i.e. e = 82 (12) Then substituting the series (11) into (6-9) and equating terms with the same powers of s, a hierarchy of equation and boundary conditions are obtained from which it is possible to obtain §n and t\B successively. Up to third order in e, these are given as follows : (13a) on y= 0 (13b) on y = -l (13c) (14a) VIThe solution of the first order problem is found to be T,=A,(*t), ^ = ~^ (16> where A,(x,t) is an arbitrary function to be determined in higher order problems. By employing the first order solution (16) into the second order problem, the second order solutions are obtained as ?.-f(f»)^M.,-HI'-«-«-' where A2(x,t) is an arbitrary function to be determined also in higher order problems. At this order, the boundary condition (14b) on y = 0 yields ^F“âF-0 (18) For the waves propagating along the positive x - axis, the solution of (18) is taken as A,=F(x-t) (19) where F is an arbitrary function. Then (17) becomes fyJ İS2F., A öA2 lföFV /om K2 J 8£,2 iy ',2 a 2 as If we employ 2 in (15a), and then integrating the resulting equation with respect to y once, and using the boundary condition (15d), we get a« or t->», i.e. A, increases without bound. Therefore the second order solutions $2 and t\2 indicate secular behaviour. That is, when x=0(e_1) or t = 0(e~') the first order solutions.j), and ti, and the second order solutions §2 and tj2 become the same order and then the formal asymptotic expansions given in (11) cease to be uniformly valid. Let us now assume that the waves propagating along the positive x-axis is developed from an initial state prescribed at t=0. In that case, for a fixed x when t = 0(e') the second order solutions 2 and ti2 indicate secular behaviour and therefore the asymptotic expansions (11) become non-uniform. The secularity may be removed by the method of multiple scales [16]. To do this, we introduce new time variables t”=t, t,= et (24) instead oft, where t, characterizes the slow variation with time ; and assume that and ti are functions of x, t0,t, and y. Then utilizing the asymptotic expansion n = İeX(^t0,t1), = Zen«l>n(xy.t.,t1) (25) in (6-9) instead of those given in (11) a new hierarchy of problems are obtained to determine 4>“, Tin successively. The solutions of the new first and second order problems are found to be V 4,t, t.), li=-^i (26> and ”..?$+tyst“”'k ?'.') ^-S7*-^-|' 0 which measures the degree of nonlinearity and, at the same time, the narrowness of the side band width of the carrier wave number centered around a specific wave number ;“(Xo.x..x2,y,t0.t1,t2) îl = ZenTi”(x“.xI,x21t0.t1,t2) (35) where IXx, = e'x, t, = s't (36) are the multiple scales introduced to specify the slow variations of the amplitude compared with the phase of the carrier waves. Hence, writing first the equations and boundary conditions (1-4), in terms of the new independent variables |x0, x,, Xj, t0, t,, t2, yj, then employing the expansions (35) and collecting the terms of like powers in e yield a hierarchy of problems from which it is possible to determine ”, ti“ successively. Up to third order in e, these are given as follows ; SXo ay ±t-fL=0 and a0 dy St. + gn,- T 8\ pdx20 dy = 0 on on o(e'): fÜi+£Üı=_2Ü^- w ax;; ay2 d^dx, at”a^ ay £n1_£n1a^1_ a , at, ex0 ax0 1 ay2 ak Tati2 a.)), - +gn2- ---=- - at0 p ax. at. Til a2*, at0ay 2 af..(*).+iI-£a~o P dx0dx. = 0 o(e>) : ay 92: aM», a2*: ax2 ay2 dq» &?,_ at0 ay s22 Sn2 ^h at, at2 ax“ ax0 ax0 ax0 on y=0 on y=-h an, az4>, 1,a>, an, a*, ax0 ax0ay 2 ay ax0 ax, a^-öf, at, at2 -.n. at0ay Til, a2.),, a2*, - Til >,*i T ay ay at,ay ax0 ex, P o g2n2 a2^, a2n, ax2 ax”ax, ax“ax2j (38c) (38d) (39a) on y=0 (39b) on y=0 (39c)%=0 on y=-h (39d) 5y Note that, as usual in these types of asymptotic analysis, the problems at each step are linear. Moreover the first order problem is simply the classic linear wave problem. Accordingly we may take the first order solutions as ; 11=İA?>(x1Ix2,tI,t2)e»+c.c 1.1 tIIt2) (40) where e = kx0- = 0 (42) - I -1 where LtJa',”. B», eT)' (43) and f -fol -kl kl ' g + k2l2y - iool -icol (44) 0 kle-“”-kle1*, W,= Note that detW = 0 gives the dispersion relation of the linear waves, i.e. XIThe solution of (38a) can be sought as ?,= ?,+.?, (5°) where 2 is the particular solution of the nonhomogeneous equation (38a) while 2 is the solution of the corresponding homogeneous equation. The solution $2 is found by using the method of undetermined coefficients. For is found to be 2- ax. (dR dR^I âk +Vgârâ (57) (58) where /£2 = /^2 (x,, x,, t,, t2) is a complex function representing the second order slowly varying amplitude of the wave modulation, and it can be determined from higher order perturbation problems. But, since we consider the weakly nonlinear waves, our aim is here to obtain just the uniformly valid first-order solution. Therefore it is sufficient to obtain /f, and D,, and this will be done at the third order. (57) only implies that /*,=*, (x1-V“tI, x,, t2) (59) Note that, for fe2 since it is assumed that det W * 0 for I*, then it is found that xuU(2) = W;1 b(2) / U*”S0 for 1^3 (60). 2 The solution (j>3 of the third order problem can be decomposed as in the second order, i.e. «t»3=*3+*3 _ (61) The particular solution $3 of the nonhomogeneous differential equation (39a) is found by the method of undetermined coefficients. For £3 and r\3 as in the previous case, we let t\, = İA3,,(x1IxI,t1,t2)ea' + c.c.+E3(xI,x2,tI,t2) £, = İ^'fr.M^K* +C3“(xI,x2,t”tJ)e-»*)eM -nee. +D3(x1,x2)t“t2) (62) Then the boundary conditions (39b-d) yield Wl/^b1”1=0,1,2,.... (63) -1-3-3 N ' where b*2= ^(xi -VBt ? x2. *a). The condition (67) then yields 1 (^+ V« r-^)+ r^7^+Il ^ıfa+Ö*,- ° (69) 6t2 Sx2 5x, where 1 d2o - ", r=, A = -LF/ 2dk2 ( aw ^1R Hi (0-l>,-3) (70) v a J Sx, J and F is a constant vector. We can eliminate E2 from (66) and from , can be constructed by (49). In the limit of no capillarity, (73) recovers the result for the gravity waves given in [17]. The coefficients r and A are responsible for the modulational instability of a nonlinear plane wave solution of (73). The plane wave train is stable or unstable according as TA0. In the limit of infinite depth, it is seen that the capillary-gravity waves on the deep liquid are modulationally unstable for k>(g/2y)V2 or for k 1.363) TA>0 while for the shallow water waves (kh< 1.363) TA0. Therefore they are modulationally unstable for all wave numbers. These results agree with the existing ones [17,18]. MV
Benzer Tezler
- Nonlinear dynamic pressure evaluation along progressive wave profiles
Başlık çevirisi yok
MEHMET ALİ BAYKAL
- Genelleştirilmiş elastik bir ortamda kuple yüksek mertebe nonlinear schrödinger denklemleri
Coupled higher-order nonlinear schrödinger equations in a generalized elastic medium
İRMA HACINLIYAN
- Marmara Denizi'nde sualtı heyelanı kaynaklı bir tsunami: Tuzla açıkları için bir senaryo
A landslide generated tsunami in Marmara Sea: A scenario for Tuzla offshore
GÖRKEM SİVRİ
- Tabakalı bir hiperelastik yarım uzayda nonlinear yüzey sh dalgalarının yayılması
Propagation of nonlinear surface sh waves in a layered hyperelastic half-space
HALİL İBRAHİM VAR
Doktora
Türkçe
1997
Matematikİstanbul Teknik ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. MEVLÜT TEYMÜR