Geri Dön

Depreme dayanıklı yapılarda yarar-fiyat ilişkisi

Başlık çevirisi mevcut değil.

  1. Tez No: 55727
  2. Yazar: ELİF SAĞLAM
  3. Danışmanlar: PROF.DR. HASAN BODUROĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1996
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 107

Özet

ÖZET Deprem mühendisliğinde, sürdürülen teorik ve pratik araştırmalar sonucunda edinilen yeni bilgilerin yürürlükteki yönetmeliklere aktarılarak yapıların deprem güvenliğinin arttırılması başlıca amaçlardan biridir. Ülkemizde deprem mühendisliği ile ilgili çalışmalar İtalyan Yapı Talimatnamesinin çevrisi ile 1940 yılında başlamıştır. Günümüzde halen 1975 yılında son halini alan Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik yürürlükte olup artık edinilen yeni bilgilerin yönetmeliğe yansıtılarak güncelleştirilmesi ve dünya çapmda kabul gören deprem yönetmelikleri seviyesine, ülkemiz koşullan da dikkate alınarak, çıkarılması gerekmektedir. Bu amaçla 1993 yılında başlayan yeni bir deprem yönetmeliği yazılması çalışmaları üniversitelerin ve meslek odalarının katkılarıyla halen devam etmektedir. Bu çalışmada, Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik (1975) ile Temmuz 1994 ve Ağustos 1995 tarihli taslak yönetmelikler incelenmiş, bir örnek üzerinde anılan yönetmeliklere uygun, depreme dayanıklı yapı tasarımında yarar- fiyat ilişkisi araştırılmıştır. Taşıyıcı sistem maliyetini oluşturan en önemli kalemler olan beton ve çelik fiyatları kullanılarak yapılan bu karşılaştırmada; taşıyıcı sistem fiyatlarındaki artış yüzdesi dikkat çekecek derecede küçüktür. Planda ve düşeyde, yeni yönetmelik taslaklarında ciddi kısıtlamalar getirilen, süreksizlikleri içeren yapılarda, dinamik analiz gerektirecek yükseklikte ve özellikteki binalarda ya da bunlara benzer durumlarda artış yüzdesi bu derece küçük olmayabilir. Ancak tasarımında çoğunlukla ekonomik kaygıların öne geçtiği, lüks olmayan konut tipi yapılarda elde edilen bu sonuç taşıyıcı sistem hesabı ya da yapımı aşamasında yapılacak parasal kısıtlamaların binanın toplam maliyetini büyük oranda azaltmadığını vurgulamaktadır. Elde edilen sonuçlara göre, çalışmaları devam etmekte olan yeni deprem yönetmeliğinin Temmuz 1994 ve Ağustos 1995 tarihli taslakları uyarınca tasarım yapılması durumunda binanın taşıyıcı sistem maliyetinde ortaya çıkan artış, halen yürürlükte olan 1975 tarihli Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik'e göre tasarım yapılması durumunda bulunan taşıyıcı sistem maliyetinden yalnızca % 5~10 oranında fazladır. Kaba inşaatın yapının toplam maliyeti içindeki oranının yaklaşık % 40 olduğu düşünülürse; taşıyıcı sistemde meydana gelen % 5-10 mertebesindeki bir artış binanın toplam maliyetini ancak % 2~4 mertebesinde arttırmaktadır. Depremin oluşturacağı tehlikelerden korunmak bir lüks değil ihtiyaçtır. Depremle içice yaşamak zorunda olan ülkeler, ekonomik durumlarını da dikkate alarak mümkün olabilecek en yüksek standartlı yönetmelikleri oluşturmalı ve uygulamaya geçirmelidirler. XV

Özet (Çeviri)

THE COST-BENEFIT ANALYSIS OF EARTHQUAKE RESISTANT BUILDINGS SUMMARY One of the leading aims of earthquake engineering is to use the knowledge gained from theoretical and practical studies in the field of strengthening structures by changing codes according to those. Studies about earthquake engineering in Turkey have begun at 1940 by translating The Italian Code For Structures. In 1942 it was renewed. Then in 1944, 1949, 1953, 1961, 1962 and in 1968 several seismic codes have been written. In the mean time Code For Structures at Earthquake Regions (1975) is valid. But since 1993 a new seismic code is being prepared. In this study the differences between Code For Structures at Earthquake Regions (1975) and the Preliminary Study of New Seismic Code which was prepared at July 1994 and the Preliminary Study of New Seismic Code which was prepared at August 1 995 is examined and the cost benefit analysis at earthquake resistant structures is investigated. As an example a structure with one basement and four normal stories is chosen. The static analysis of the structure is performed by a computer program called ETABS, which is a module of SAP90 specially improved for building type structures. Reinforcement is calculated by simple computer programs at beams and columns. An undeformed shape of the structure is shown at Figure 1.1, and a plan of story that includes column line identification numbers and bay identification numbers is shown at Figure 1.2. The General Approach Of Preliminary Seismic Code includes these subtitles;. Detailed Explanation of Regular-Irregular Structures Although, the importance of building regular structures has been mentioned in Code For Structures at Earthquake Regions (1975), it is not easy to find some numeric criteria about it. The Preliminary Study of New Seismic Code consists of detailed explanation of regular-irregular structures as well as serious criteria about irregularity in plan and irregularity in elevation.. New Concepts In Definitions of Earthquake Loads First of all the calculation of the seismic coefficient is different from that of at The Code for Structures at Earthquake Regions, it is calculated by the Formula (1.2) XVIwhich is a function of a zone factor, building importance factor and response spectrum coefficient A=A0IS (1.2) In the above formula, Ao which changes between 0.1 Og and 0.40g mean ground acceleration, I mean, importance factor and S means normalized spectrum of acceleration.. Reducing Linear Elastic Earthquake Loads By The Coefficient Representing The Structural Behaivour of The System. Detailed Explanation of Old and New Calculation Methods Equivalent Seismic Lateral Loads Method Modal Analysis Method Time History Dynamic Analysis Method. Constraints For Lateral Relative Displacements At Story Levels As told before the static analysis of the structure is done by ETABS. The input, output and numerical solution techniques are specifically designed, taking into consideration specific characteristics that are unique to building type structures, thereby giving the engineer an analytical tool that offers significant savings in the time associated with data preparation, output interpretation and execution throughput over general purpose computer programs The building is idealized as an assemblage of vertical frame and shear wall systems interconnected by horizontal floor diaphragm slabs which are rigid in their own plane. The basic frame geometry is defined with reference to a three dimensional grid system and, with special modeling techniques, very complex framing situations may be considered. By importing Etabs output files to MS Excel that is an electronic table program, reinforcements are calculated. The structure is solved by three times. The first solution is done according to Code For Structures at Earthquake Regions (1975), the second solution is done according to The Preliminary Study of New Seismic Code which was prepared at July 1994 and the third solution is done according to The Preliminary Study of New Seismic Code which was prepared at August 1995. Since the structure is a regular one both due to Code For Structures at Earthquake Regions (1975) and to the Preliminary Study of New Seismic Code and its height is smaller than 75 meters The Method of Equivalent Seismic Lateral Loads is used. As told in the Turkish Code for Reinforced Concrete Structures (TS 500) five different load cases are concerned. Load Case 1 : Static vertical loads; 1.4G + 1.6Q Load Case 2, 3 : Static lateral loads applied along x axis in both positive and negative directions; XVll1.0G + 1.0Q±1.0E Load Case 4, 5 : Static lateral loads applied along y axis in both positive and negative directions; 1.0G + 1.0Q±1.0E According to the Code For Structures at Earthquake Regions (1975), total equivalent seismic load can be calculated by the belove formula, F=CW C is defined as earthquake coefficient and can be calculated by the belove formula, C=CoKSI Co stands for regional coefficient, K is coefficient for structure type, I is coefficient for the importance of the structure and S is coefficient of spectrum. Earthquake coefficient C is calculated as 0.10 and total equivalent seismic load is calculated as 1409.25 kN. According to the both studies of new seismic code, total equivalent seismic load can be calculated by the belove formula,.c mA F = R A is defined as coefficient of spectral acceleration and can be calculated by the belove formula, A=AoIS Ao stands for effective ground acceleration, I has the same meaning as above and S means normalized spectrum of acceleration. At the second solution, where R=6.5, A is calculated as 9.81 and total equivalent seismic load is calculated as 2186.89 kN. At the third solution, where R=7.0, A is calculated as 9.81 and total equivalent seismic load is calculated as 2030.68 kN. Another new approach is about stability of the structure. A coefficient of stability is defined as a criterion that points out whether P-delta effects must be considered or not. At all of the three solutions, since the coefficient of stability 6 is smaller than 0.10 as mentioned at both studies of the new code, P-delta in other words second order effects have not been considered. The change in equivalent seismic lateral loads in each solution can be clearly seen at the belove table; XVlllDistribution of Total Equivalent Seismic Lateral Load For the first solution the material is chosen as C16 / ST1 and the reinforcement calculated is shown at Section 3. For the second solution the material is chosen as C20 / ST3 and the reinforcement calculated is shown at Section 4. For the third solution the material is chosen as C16 / ST1 and the reinforcement calculated is shown at Section 5. Using the values that are obtained from the first solution (1975) the amount of concrete and steel needed is calculated. This procedure is repeated by using the values that are obtained both from the second (July 1994) and the third (August 1995) solutions.. At the first solution, total volume of concrete needed is 202.65 m and the total mass of steel needed is 18559.20 kg. At the second solution, total volume of concrete needed is 202.55 m and the total mass of steel needed is 18498.30 kg. At the third solution, total volume of concrete needed is 202.68 m3 and the total mass of steel needed is 21465.01kg In order to examine the changes in the cost of the structural system when different codes are used, unit prices of the year 1995 are used. To take lost of material, occupation of worker, profit of contractor and factors like those into account, the analyses of prices are examined and the most realistic ones are chosen. But since the analyses are not so much parallel to Turkish Code for Reinforced Concrete Buildings (TS 500) approximately price of an upper class of material is accepted.. For C 16, 1,615,057 TL/m3. For C 20, 1,690,057 TL/m3. For thin plain bars, that have diameters between 8 ~ 1 2 mm, 1 8,765,975 TL/ton. For thick plain bars, that have diameters between 14 ~ 50 mm, 1 7,349,963 TL/ton. For thin deformed bars, that have diameters between 8 ~ 12 mm, 19, 199,600 TL/ton XIX. For thick deformed bare, that have diameters between 14 ~ 26 mm, 18,454,163 TL/ton Earthquake engineering aims to use the knowledge gained from theoretical and practical studies in the field of strengthening structures by changing codes according to those and construct earthquake resistant structures. Although economical design is desired it is obvious that saving human life is the leading aim. At the last section the total cost of the structural system for each solution is calculated and compared with each other. Results are shown at the belove Table 7.1, Table 7.1 Total Cost Of The Structural System (TL) At the end of the comparison during which the costs of the most important inputs of the total cost of the building; concrete and steel are taken into account it is found that the increase in the cost of the structural system impressingly small. It can be easily told that this percentage of increase cannot be this much small at the structures that have irregularities in plan or in elevation or at structures that have to be solved precisely by developed methods like dynamic analysis etc. But this result shows that at ordinary structures that are designed mostly due to the economical aspects, any change at the cost of the structural system does not have significant effect on the cost of the whole building. In other words, concrete and steel are the most important inputs of the total cost of the building, nearly 40% of the total cost of the building is the cost of the structural system and for an 5~10% increment at the cost of structural system that of the whole building increases only by 2~4%. It is not a luxury but a need in other words a necessity to live in earthquake resistant structures. As a result the comparison between Code For Structures at Earthquake Regions (1975), The Preliminary Study Of New Seismic Code (July 1994) and The Preliminary Study Of New Seismic Code (August 1995) shows that constructing more strengthened buildings than that of the valid code by the help of the new seismic code that has been yet prepared, may not be as expensive as expected. XX

Benzer Tezler

  1. Çelik endüstri yapılarının deprem performanslarının belirlenmesi üzerine sayısal bir inceleme

    A numerical study on performance-based seismic evaluation of steel industrial buildings

    YEŞİM APAYDIN

    Yüksek Lisans

    Türkçe

    Türkçe

    2005

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF.DR. ERKAN ÖZER

  2. Deprem bölgelerinde yığma yapı tasarımının yönetmeliğe göre incelenmesi

    Examination of masonry structure design on seismic zones in accordance with the relevant regulation

    NURGÜL AKGÜNDÜZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. BİLGE IŞIK

  3. Üç katlı betonarme bir yapının çeşitli değişkenlere bağlı olarak patlama etkisi altında davranışının incelenmesi

    Investigation of the behavior of a three-storey reinforced concrete building under explosion depending on various variables

    ENES BARIŞ YAŞAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İnşaat MühendisliğiKonya Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT ÖZTÜRK

  4. Seismic rehabilitation of columns with corroded reinforcing bars through practical interventions

    Donatıları korozyona uğramış betonarme kolonların deprem performanslarının basit müdahelelerle iyileştirilmesı

    POOYA GHAFFARİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ALPER İLKİ

  5. Van ilinin afetselliği, Van Merkez ve Erciş ilçesinin kentsel dönüşümü ve yeniden yapılanması

    Seismicity of Van province, urban transformation and restructuring of Van Center and Ercis district

    CAFER GİYİK

    Doktora

    Türkçe

    Türkçe

    2022

    Mimarlıkİstanbul Sabahattin Zaim Üniversitesi

    Mimarlık Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SERHAT ANIKTAR

    DOÇ. REŞAT ATALAY OYGUÇ