Geri Dön

Developing de-noising algorithm improved with least mean squares filter for autonomous-vehicles LIDAR in snowfall

Otonom araçlarda LIDAR için kar yağışında en küçük ortalamlı kareler filtresiye güçlendirilmiş gürültü giderici algoritma geliştirilmesi

  1. Tez No: 569520
  2. Yazar: CEMRE KAVVASOĞLU
  3. Danışmanlar: DR. ÖĞR. ÜYESİ ÖMER CİHAN KIVANÇ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mekatronik Mühendisliği, Mechatronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: İstanbul Okan Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 59

Özet

Otonom araçlar için çevresel algı ana gereksinimdir. Otonom araçlarda çevrenin tespiti LIDAR, kamera ve radar tarafından sağlanırken, bazı olumsuz çevresel koşullar bu tespit sürecini kötüleştirir. Özellikle şiddetli kar yağışı sırasında kar taneleri, arkalarındaki nesnelerin görüntülerini engelleyerek görüş kalitesini düşürür. Bu çalışmada LIDAR sensörü için, LIDAR verilerini karlı havalarda arındırmak amacıyla En Küçük Ortalamalı Kareler Filtresi ile güçlendirilen gürültü giderici algoritma geliştirilmiştir. Ayrıca, kar taneleri arkasındaki gösterilmeyen nesnelerin pozisyonları daha önce kayde- dilen verilere bakılarak tahmin edilmektedir. Bu algoritmayı geliştirmek için, karlı havalarda LIDAR sensör verileri Nvidia Jetson TX1 geliştirici platformu ve Robot İşletim Sistemi (ROS) ile kaydedilmektedir. Sensör verilerindeki kar tanelerinin neden olduğu ani mesafe değişikliklerini tespit etmek için değişken bir eşik değeri kullanılarak algoritma geliştirilmiştir. Önerilen algoritma yapay bir kar makinesi kullanılarak otonom bir araç üzerinde gerçek zamanlı testlerle denenmiştir. Mevcutta bulunan median filtre sonuçlarıyla geliştirilen algortimanın sonuçları kıyaslanmıştır. Deneysel sonuçlar, önerilen algoritmanın yoğun kar yağışı altında bile \%99 gürültü azaltma başarısı gösterdiğini göstermektedir.

Özet (Çeviri)

The environmental perception is major requirement for autonomous vehicles. While the detection of the environment in autonomous vehicles is provided by LIDAR, camera and radar, some adverse environmental conditions deteriorate this detection process. Particularly when driving in heavy snow, the snowflakes reduce the vision quality by preventing the images of the objects behind them. In this study, for the LIDAR sensor the De-noising Algorithm is used which is improved by Least Mean Squares (LMS) Filter in order to purify the LIDAR data in snowy weathers. Furthermore, the positions of the objects behind the snowflakes, which are not shown, are estimated by referring the data recorded earlier. In order to develop this algorithm, the LIDAR sensor data in snowy weather is recorded via the Nvidia Jetson TX1 developer platform and the Robot Operating System (ROS). An algorithm is developed to detect sudden distance changes due to snowflakes in sensor data using a variable threshold value. The proposed algorithm is performed by real-time tests on an autonomous vehicle using an artificial snow machine. The existing median filter results are compared with the results of the developed algorithm. The experimental results show that the proposed algorithm presents 99\% de-noising success even under heavy snowfalls.

Benzer Tezler

  1. Yüksek boyutlu model gösterilimi ve çok değişkenliliği yükseltilmiş çarpımlar gösterilimi ile görüntü üzerindeki gürültüleri giderme

    Image denoising via high dimensional model representation and enhanced multivariate product representation

    SENA KAÇAR

    Doktora

    Türkçe

    Türkçe

    2024

    Matematikİstanbul Teknik Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. BURCU TUNGA

  2. Denetimsiz derin öğrenme kullanılarak dijital meme tomosentezi görüntülerinde bulanıklığın giderilmesi

    Unsupervised deblurring of digital breast tomosynthesis images using deep learning

    MÜBERRA AYDIN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İSA YILDIRIM

  3. Wavelet based harmonic analysis: Case study of a plant with cogeneration

    Dalgacık tabanlı harmonik analizi: Kojenerasyon sistemli bir örnek olay incelemesi

    GÜNEŞ BECERİK

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Elektrik ve Elektronik MühendisliğiYaşar Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. HACER ÖZTURA

  4. Harici optik geri beslemenin yarı iletken enjeksiyon lazerlerine etkileri ve titreşim ölçümü

    External optical feedback effects on semiconductor lasers and vibration measurement

    MEHMET TİKEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2011

    Elektrik ve Elektronik MühendisliğiKırıkkale Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞERAFETTİN EREL

  5. Image denoising and image enhancement on the applications of confocal laser scanning microscopy

    Lazer taramalı konfokal mikroskop uygulamalarında görüntü gürültüsünün giderimi ve görüntü iyileştirimi

    YUNUS ENGİN GÖKDAĞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Elektrik ve Elektronik MühendisliğiBoğaziçi Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ÖZGÜR KOCATÜRK

    YRD. DOÇ. DR. YİĞİT DAĞHAN GÖKDEL