GPR raw-data analysis to detect crack via wavelets and deep learning methods
Yer radarı ham verisi analizi ile kırıkların dalgacık ve derin öğrenme yöntemleri ile tespiti
- Tez No: 573712
- Danışmanlar: DR. ÖĞR. ÜYESİ NALAN ÖZKURT, DOÇ. DR. GÖKHAN KILIÇ
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: Yaşar Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 84
Özet
Bu tez, yollar ve köprüler gibi altyapılarda gelecekte sorunlara yol açabilecek çatlakların tespit edilmesi ile ilgilidir. Çatlakları tespit etme yöntemleri tahribatlı ve tahribatsız olarak iki grupta incelenir. Bu çalışma tahribatsız yöntemleri özellikle de diğer yöntemlere kıyasla birçok avantajı nedeniyle yer radarı analizleri kullanarak materyallerdeki çatlakları analiz etmeyi amaçlamaktadır. Bu çalışmada, bir laboratuvar ortamı oluşturulmuş ve farklı şekil ve malzemelerde kırıklı ve kırıksız çeşitli blokların yer radarı ve termal görüntü ölçümleri yapılmıştır. Sonra görsel ve termal analizin ardından, GPR ham verileri dalgacık dönüşümü ve entropi yöntemleri ile analiz edilmiştir. Son olarak, sürekli dalgacık dönüşümü katsayıları derin öğrenme yöntemleriyle, özellikle evrişimsel sinir ağı ile sınıflandırılmış ve sınıflandırma doğruluğu hesaplanmıştır. Ayrıca, önceki araştırma çalışmaları için kullanılan bir köprüye ait bir vaka çalışması, yöntemleri daha geniş bir ölçekte test etmek için kullanılmıştır. Sonuçlar, önerilen Wavelet-CNN çatlak tespit yönteminin, ham veri veya b-tarama sinyallerinden doğrudan çatlakları tespit etmekten daha iyi olduğunu göstermektedir.
Özet (Çeviri)
This thesis is about detecting cracks on infrastructures such as roads and bridges which may result in several problems in future. There are several methods for detecting cracks which can be summarized as destructive and nondestructive. This study aims to analyze cracks in materials by using non-destructive techniques (NDT) especially Ground Penetrating Radar (GPR) analysis because of its many advantages over other NDTs as will be seen under the literature review. In this study, a laboratory environment is constructed and GPR and thermal image measurements of several cracked and non-cracked slabs of different shapes and materials were conducted. Then after visual and thermal analysis, the GPR raw-data is analyzed with wavelet transform and entropy analysis. Finally, the continuous wavelet transform coefficients are classified with deep learning methods, specifically convolutional neural network and the classification accuracy was calculated. Furthermore, a case study of a bridge used for previous research works was used to test the methods on a larger scale. The results show that the Wavelet-CNN crack detection method proposed is better than detecting cracks directly from the raw-data or b-scan signals.
Benzer Tezler
- Horseshoe adası Antarktika'da İHA-GPR gözlemlerine dayalı buzul izleme ve 3D modelleme
Glacier monitoring and 3D modeling based on UAV-GPR observations on horseshoe island, antarctica
MEHMET ARKALI
Yüksek Lisans
Türkçe
2024
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MAHMUT OĞUZ SELBESOĞLU
- Yere nüfuz eden radarlarda öğrenme tabanlı yeni kargaşa giderme yöntemleri
New learning-based clutter removal methods in ground penetrating radar
EYYUP TEMLİOĞLU
Doktora
Türkçe
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. IŞIN ERER
- Deep unfolding for clutter removal in ground penetrating radar
Yere nüfuz eden radarda kargaşa gidermek için derin katman açma
SAMET ÖZGÜL
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. IŞIN ERER
- Ground penetrating radar antenna design to detect buried object and signal processing with deep learning networks by usingnumerical electromagnetic methods
Gömülü hedef tespit etmek için yere nüfuz eden radar anten tasarımı ve sayısal elektromanyetik yöntemler kullanarak derin öğrenme ağları ile sinyal işleme
REYHAN YURT
Doktora
İngilizce
2023
Elektrik ve Elektronik MühendisliğiYıldız Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DOÇ. DR. HAMİD TORPİ
- 2 boyutlu yer radarı görüntülerinden 3 boyutlu görüntü elde etme tekniklerinin araştırılması ve uygulanması
Research and implementation of the techniques for 3 dimensional images modeling from 2 dimensional images of ground panetrating radar
ERKAN ŞENGÖNÜL
Yüksek Lisans
Türkçe
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnkara ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. REFİK SAMET