Image denoising using deep convolutional autoencoders
Başlık çevirisi mevcut değil.
- Tez No: 575412
- Danışmanlar: DR. ÖĞR. ÜYESİ MUSTAFA FURKAN KIRAÇ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: Özyeğin Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Bilimleri Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 77
Özet
Birçok bilgisayarla görme uygulamasında tamamlanması gereken bir adım olması sebebiyle, resimde gürültü giderme imge işleme alanının temel problemlerinin başında gelir. Resimde gürültü gidermek için, uzamsal filtrelemeden modele dayalı yaklaşımlara kadar yıllar içerisinde çeşitli yöntemler kullanılmıştır. Tüm geleneksel yöntemlerden daha iyi bir performans sergilemelerinden ötürü, sinir ağı tabanlı ayrımcı yöntemler son yıllarda popülerlik kazanmıştır. Bununla birlikte, bu yöntemlerin çoğu hala daha çeşitli gürültü seviyelerine ve türlerine karşı esneklik sağlamak konusunda sorun yaşamaktadır. Bu tezde, resimde gürültü gidermek için özellik piramitlerinin bir çeşidini içeren derin evrişimli otomatik kodlayıcı kullanan bir yöntem sunuyoruz. Çeşitli gürültü seviyelerine ve tiplerine karşı dayanıklılığı arttırmak için, öğrenme sırasında doğal görüntülerin yanı sıra; Blender yazılımında elde ettiğimiz simüle edilmiş verileri de kullanıyoruz. Deneysel sonuçlarımız, önerilen yöntemin, en gelişmiş yöntemlerle kıyasla çok daha az bir eğitim süresiyle kör Gauss gürültü giderme işleminde rekabetçi bir performans sergileyebildiğini göstermektedir. Kapsamlı deneyler bize yöntemimizin, tek bir ağ ile geniş gürültü seviyesi aralığında umut verici bir performans sergilediğini de gösterdi.
Özet (Çeviri)
Image denoising is one of the fundamental problems in image processing field since it is required by many computer vision applications. Various approaches have been used in image denoising throughout the years from spatial filtering to model based approaches. Having outperformed all traditional methods, neural network based discriminative methods have gained popularity in the recent years. However, most of these methods still struggle to achieve flexibility against various noise levels and types. In this thesis, we propose a deep convolutional autoencoder combined with a variant of feature pyramid network for image denoising. We use simulated data in Blender software along with corrupted natural images during training to improve robustness against various noise levels and types. Our experimental results show that proposed method can achieve competitive performance in blind Gaussian denoising with significantly less training time required compared to state-of-the-art methods. Extensive experiments showed us proposed method gives promising performance in wide range of noise levels with a single network.
Benzer Tezler
- Evrişimsel sinir ağları tabanlı gürültü giderici otomatik kodlayıcı kullanarak görüntüyü gürültüden arındırma
Image denoising using deep convolutional based on denoising autoencoder
MOHAMMED SHAMIL IBRAHIM IBRAHIM
Yüksek Lisans
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BETÜL UZBAŞ
- Deep convolutional neural networks for image inpainting
Derin evrişimsel sinir ağları ile resimlerde içboyama
UĞUR DEMİR
Yüksek Lisans
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. GÖZDE ÜNAL
- Derin öğrenme tabanlı görüntü gürültü giderme için yoğun bağlantı kullanan yeni yaklaşımlar
Densely connected structures in deep learning based image denoising
VEDAT ACAR
Yüksek Lisans
Türkçe
2022
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ENDER METE EKŞİOĞLU
- Derin öğrenme kullanarak uçak tanıma
Aircraft recognition with deep learning
ZEYNEL ÜNAL
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTürk Hava Kurumu ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ŞADİ ŞEHAB
- CNN tabanlı modeller kullanılarak sinyal gürültü bastırma ve frekans seçici filtrelemenin modellenmesi, uygulaması ve harmonik tabanlı performans degerlendirilmesi
The modeling, application and harmonic-based performance evaluation of signal denoising and frequency-selective filtering by using CNN-based models
OMAR NAJAR
Yüksek Lisans
Türkçe
2022
Elektrik ve Elektronik MühendisliğiSüleyman Demirel ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ TURGAY KOÇ