Sentiment analysis on social networks using machine learning and audio processing
Makine öğrenmesi ve ses işleme kullanılarak sosyal ağlar üzerinde duygu analizi
- Tez No: 577034
- Danışmanlar: YRD. DOÇ. DR. DİLEK GÜNNEÇ DANIŞ
- Tez Türü: Yüksek Lisans
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: Özyeğin Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 67
Özet
Kutuplaşma sınıflandırması, duygu analizinin en temel problemlerinden biridir. Bizim yaptığımız inceleme, Twitter mesajlarında kutuplaşma sınıflandırması yapmak için ses verilerine dayanarak yeni bir tanım, çıkarım ve kullanım geliştirmeye çalışmaktadır. Çalışmanın arka planı son dönemde yapılan bir incelemeye dayanmaktadır: beyin, dil oluşturmak/üretmek için sesleri kullanır ve kelimeler sese dönüştükçe anlaşılır hale gelir. Özellikle imlası bozuk olabilecek veya kısaltılmış kelimeler kullanılacak olan sosyal medya mesajlarında ses kelime ile benzer ise, ses kullanmak etkili olur (thank u, b4). Vardığımız sonuçlara göre önerdiğimiz bazı özellik tanımları mevcut araştırmalara kıyasla doğruluk/kesinlik açısından ilerleme gösteriyor.
Özet (Çeviri)
Polarity classification is one of the most fundamental problems in sentiment analysis. Our study strives to develop a new definition, extraction technique and utilization of features based on the audio data for polarity classification on Twitter messages. The background of work relies on a recent study which suggests that brain uses sound as a part of language generation and words are comprehended as they are converted into sound. Using sound is effective especially for social media messages which are likely to contain misspelled or shortened words, where the sound is similar to the actual word (e.g., thank u, b4). Our results show that one of our proposed feature set definitions demonstrate an improvement in accuracy in comparison to existing studies.
Benzer Tezler
- Dönüştürücüler ve derin öğrenme modelleriyle sosyal medya duygu analizi
Social media sentiment analysis by using transformers and deep learning models
HÜSEYİN İLGÜN
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOndokuz Mayıs ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ERDAL KILIÇ
- Sosyal ağ verileri kullanılarak Türkiye'nin duygu analizinin görselleştirilmesi
Visualization of the sentiment analysis of Turkey using social network data
MUSTAFA GÖÇENOĞLU
Yüksek Lisans
Türkçe
2014
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. İLKER TÜRKER
- Türkçe metinlerde denetimli ve sözlük tabanlı duygu analizi yaklaşımlarının karşılaştırılması
Comparison of supervised and dictionary based sentiment analysis approaches on Turkish text
BURAK İBRAHİM SEVİNDİ
Yüksek Lisans
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. HACER KARACAN
- Kelime kullanım oranları ve kullanıcı istatistikleri kullanılarak Türkçe Twitter verisi üzerinde duygu analizi
Sentiment analysis on Turkish Twitter data using term usage rates and user statistics
CEM GÜMÜŞ
Yüksek Lisans
Türkçe
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDoğuş ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. SELİM AKYOKUŞ
- Sosyal medya madenciliğinde insan duygularının ve tepkilerinin analizi
Analysis of human emotions and reactions in social media mining
ULVI ISGANDARLI
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMersin ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. HAMZA EROL