Geri Dön

Teknik analiz ve derin pekiştirmeli öğrenme ile kriptopara alım-satımı

A cryptocurrency trading with deep reinforcement learning and technical analysis

  1. Tez No: 585867
  2. Yazar: MUHAMMED SAİD ÜNLÜ
  3. Danışmanlar: DOÇ. DR. PINAR YILDIRIM
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Derin Pekiştirmeli Öğrenme, Kriptoparalar, Algoritmik Alım-Satım, OpenAI-Gym, Soft-Aktör-Kritik, Teknik Analiz, Geriye Yönelik Testler, Deep Reinforcement Learning, Cryptocurrencies, Algorithmic Trading, Backtesting, OpenAI-Gym, Soft-Actor-Critic, Technical Analysis
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: İstanbul Okan Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 123

Özet

Son yıllarda teknolojinin yıkıcı etkisi birçok alanda kendini göstermektedir. Finans sektörü de bu durumdan fazlasıyla etkilenmiş durumdadır. Finansal piyasalar, artan rekabet ve gelişen teknoloji ile kriptopara piyasası gibi yenilikçi piyasaların oluşmasına zemin hazırlamaktadır. Finansal piyasalardaki değişime paralel olarak, yapay zeka alanındaki çalışmalarda da çok önemli gelişmeler olmaktadır. Bu çalışmada Robotik üzerine başarılı sonuçlar veren modern Derin Pekiştirmeli Öğrenme yöntemlerinden Soft-Aktör-Kritik(Soft Actor Critic - SAC) yöntemi ile finansal piyasalarda sıklıkla tercih edilen Teknik Analiz yöntemlerini kullanarak alım-satım stratejileri geliştirilmiştir. Piyasa değeri en yüksek üç kriptopara (Bitcoin, Ethereum ve Ripple), hem USD hem de BTC paritesinde veri seti olarak kullanılmaktadır. Çalışma kapsamında OpenAI-Gym ile kriptopara alım-satım ortamı oluşturulmuş ve bu ortamda SAC etmeni öğrenme süreci gerçekleştirilmektedir. Teknik Analiz yöntemleri ve SAC yöntemiyle oluşturulan stratejilerin performansları geriye yönelik testler(Backtesting) yapılarak karşılaştırılmaktadır.

Özet (Çeviri)

In recent years, the destructive effect of technology is manifested in many areas. The financial sector has been also highly affected by this situation. Financial markets set the stage for the development of innovative markets such as increasing competition and developing technology and cryptographic market. Parallel to the change in financial markets, there are also important developments in artificial intelligence studies. In this study, trading strategies have been developed using Soft-Actor Critic (SAC) method, which is a state-of-the-art deep reinforcement learning method, which gives successful results on robotics, and the technical analysis methods which are frequently preferred in financial markets. Three cryptocurrencies (Bitcoin, Ethereum and Ripple) with the highest market value are used as the data set in both USD and BTC parity. Within the scope of this study, a cryptocurrency trading environment has been created with OpenAI-Gym and the process of SAC agent's learning is realized in this environment. Technical Analysis methods and SAC method's performances are compared by backtesting.

Benzer Tezler

  1. A novel artificial intelligence based energy management system for microgrids

    Mikro şebekeler için yapay zeka temelli yeni bir enerji yönetim sistemi

    NECATİ AKSOY

    Doktora

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. VEYSEL MURAT İSTEMİHAN GENÇ

  2. Predicting stock prices in bist: A reinforcement learning and sentimental analysis approach

    Pekiştirmeli derin öğrenme ve duyarlılık analizi yaklaşımı ile bıstteki hisselerin fiyatlarının tahmin edilmesi

    ŞEYMA EĞE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Büyük Veri ve Veri Analitiği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MEHMET ALİ ERGÜN

  3. Object-aware interactive perception

    Nesne farkındalıklı etkileşimli algılama

    ÇAĞATAY KOÇ

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. SANEM SARIEL UZER

    PROF. DR. SİNAN KALKAN

  4. Resource allocation in vehicular edge computing networksbased on deep reinforcement learning

    Araç uç bilişiminde derin pekiştirmeli öğrenmeye dayalıkaynak tahsisi

    HOMA MALEKI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    PROF. DR. LÜTFİYE DURAK ATA

  5. A comparative study of learning based control policies and conventional controllers on 2D bi-rotor platform with tail assistance

    Öğrenme temelli kontrolcüler ile geleneksel kontrolcülerin iki boyutta kuyrukla desteklenmiş iki rotorlu uçan robotik platform üzerinde karşılaştırmalı çalışması

    HALİL İBRAHİM UĞURLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AFŞAR SARANLI

    DOÇ. DR. SİNAN KALKAN