Geri Dön

Improving the accuracy of indoor positioning system

İç konum belirleme sisteminin doğruluğunun iyileştirilmesi

  1. Tez No: 586916
  2. Yazar: MOHAMMED MUWAFAQ NOORI HAMEEZ
  3. Danışmanlar: ASST. ASSOC. DR. TANER ARSAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Kadir Has Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 102

Özet

İç mekan konum belirleme uygulamaları, nispeten daha küçük alanlarda kullanılmak ve mevcut engellerle başa çıkmak için dış mekan konum belirleme yöntemlerinden daha yüksek doğruluk ve hassasiyet gerektirir. İç mekandaki bir nesnenin veya insanın konumlarını belirlemek için kullanılabilecek çeşitli yöntemler bulunmaktadır. Özellikle, Ultra geniş bant (UWB) sensör teknolojisi, yüksek doğruluğu, bozuculara olan direnci ve iç mekan uygulamalarında geniş bant sinyallerinin her taraftan algınabilmesi özelliği sayesinde iç mekan konum belirlemede gelecek vaad eden bir teknolojidir. Bu tez çalışması, UWB sensör tabanlı iç mekan konum belirleme sisteminin doğruluğunu arttırmaya odaklanmıştır. Bunu başarmak için, optimizasyon ve makine öğrenmesi algoritmaları kullanılmıştır. Kalman Filtresi (KF)'nin konum belirleme doğruluğu üzerindeki etkisi algoritmaların uygulanması esnasında görülmüş ve açıklanmıştır. Büyük patlama - büyük çöküş algoritması (BB-BC), Kalman filtresiyle birleştirildiğinde, ortalama konum belirleme hatasının yaklaşık %54,53 oranındığı görülmüştür (16,34 cm'den 7,43 cm'ye düşer). Son olarak, bir Hibrit (BB-BC KF K-Ortalamalar) algoritma ayrı olarak geliştirilmiş ve uygulanmıştır, en iyi sonuçlar bu Hibrit algoritmadan elde edilmiştir. Bu sayede, ortalama lokalizasyon hatasının yaklaşık %64,26 oranında (16,34 cm'den 5,84 cm'ye) önemli ölçüde azaldığı belirlenmiştir.

Özet (Çeviri)

Indoor positioning applications needs high accuracy and precision to overcome the existing obstacles and relatively small areas. There are several methods which could be used to locate an object or people in an indoor location. Specifically, Ultra-wide band (UWB) sensor technology is a promising technology in indoor environments because of its high accuracy, resistance of interference and better penetrating. This thesis is focused on improving the accuracy of UWB sensor based indoor positioning system. To achieve that, optimization and machine learning algorithms are implemented. The impact of Kalman Filter (KF) on the accuracy is introduced in the implementation of the algorithms. The average localization error is reduced by approximately 54.53% (from 16.34 cm to 7.43 cm), when combining the big bang - big crunch algorithm (BB-BC) with Kalman Filter. Finally, a Hybrid (BB-BC KF K-Means) algorithm is improved and implemented separately, and the best results are obtained from this Hybrid algorithm. Thus, it has been obtained that the average localization error is reduced significantly by approximately 64.26% (from 16.34 cm to 5.84 cm).

Benzer Tezler

  1. WLAN-based Indoor Navigation

    WLAN-temelli IC navigasyon

    MUHYIDDEEN YAHYA MUSA

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik MühendisliğiZirve Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÖKHAN APAYDIN

  2. Improving indoor positioning system by using wi-fi fingerprint with machine learning methods

    Wi-fi parmak izi kullanarak kapalı konumlandırma sisteminin makine öğrenmesi yöntemleri ile geliştirilmesi

    YADGAR AHMED HASSAN HASSAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Elektrik ve Elektronik MühendisliğiSiirt Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. YILMAZ KAYA

  3. İç mekanlarda zemin yol modeli üzerinde derin öğrenme ile otonom araçların rota takibi

    Route tracking of autonomous vehicles with deep learning on the floor path model in indoor areas

    MUSTAFA ERGİNLİ

    Doktora

    Türkçe

    Türkçe

    2023

    Endüstri ve Endüstri MühendisliğiSakarya Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. İBRAHİM ÇİL

  4. Enhanced out of boundary uwb based localization for industrial digital twins

    Endüstriyel dijital ikizler için alıcı alanın dışında uwb tabanlı konumlandırma iyileştirmesi

    LÜTFÜ SİRAC KÜÇÜKARABACIOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ GÖKHAN SEÇİNTİ

  5. Optimized visual odometry and satellite image matching-based localization for UAVS in GPS-denied environments

    GPS olmayan ortamlarda İHA'lar için optimizasyonlu görsel odometri ve uydu görüntüsü eşleştirme tabanlı konumandırma

    ÖMER SEFA ÖZTÜRK

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    DOÇ. DR. ALPTEKİN YILDIZ