Geri Dön

Zararlı android yazılımlarının makine öğrenmesi ile ailelerine göre sınıflandırılması

Android malware family classification with machine learning

  1. Tez No: 589234
  2. Yazar: SERCAN TÜRKER
  3. Danışmanlar: DOÇ. DR. AHMET BURAK CAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Hacettepe Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 79

Özet

Android mobil işletim sisteminin oldukça popüler olması bu sistemin kullanıcılarına zarar vermek amacıyla geliştirilen yazılımların sayısında artışa sebep olmaktadır. Bu nedenle zararlı Android yazılımlarının tespit edilmesi amacıyla birçok çalışma yapılmıştır. Android yazılımlarının zararlı ya da zararsız olarak sınıflandırılması dışında, zararlı olduğu bilinen yazılımların ait oldukları ailelere göre sınıflandırılması da Android işletim sisteminin güvenliği kapsamında oldukça önemlidir. Bu çalışmada zararlı Android yazılımlarını analiz ederek bu yazılımların ait olduğu aileyi tahmin eden makine öğrenmesi tabanlı bir sistem geliştirilmiştir. Geliştirilen bu sistem, zararlı Android yazılımlarının talep ettiği izinleri ve yaptığı API çağrılarını tespit ederek bunları makine öğrenmesi algoritmalarında öznitelik olarak kullanmakta ve farklı sınıflandırma algoritmaları ile zararlı yazılımların sınıflandırılmasına imkan tanımaktadır. Sistemin performansı çeşitli veri kümelerinde yapılan deneylerle incelenmiş ve deney sonuçlarında tüm sınıflandırma algoritmalarının zararlı yazılımları yüksek doğruluk değerleriyle sınıflandırdığı görülmüştür. Bu çalışmaya ek olarak, daha önce karşılaşılmamış bir zararlı yazılım ailesine ait zararlı yazılımın bilinmeyen olarak tespit edilebilmesi için de çalışma yapılmış ve bu yazılımlar yüksek oranda başarıyla tespit edilmiştir.

Özet (Çeviri)

As the popularity of Android mobile operating system grows, the number of software developed to harm the users of this system increases. Therefore, many studies have been done to detect malicious Android software. Apart from the classification of Android software as malicious or benign, classification of the malicious software into their families is also very important in terms of the security of the Android operating system. In this study, a machine learning based classification system is developed that analyzes malicious Android software and estimates the family of them. The developed system detects the requested permissions and API calls of the malicious Android software and uses them as features in machine learning algorithms to classify malwares. The performance of the system is investigated using various data sets and the evaluation results show that all classification algorithms classified the malware with a high accuracy. In addition to this work, a study of detecting an unknown malware which belongs to a family that had never seen before is made and these unknown malwares are classified with a high success rate.

Benzer Tezler

  1. Kötü amaçlı android yazılımların makine öğrenmesi yöntemleri ile tespiti

    Detection of android malware with machine learning methods

    ABDULLAH BATUHAN YILMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MURAT KÖKLÜ

  2. Android zararlı yazılım tespit sistemi

    Android malware detection system

    TÜLAY AVAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Osmangazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ESRA NERGİS YOLAÇAN

  3. Hibrit analiz kullanarak android kötücül yazılım aile sınıflandırması

    Android malware family classification by using hybrid analysis

    ÖMER FARUK TURAN CAVLI

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SEVİL ŞEN AKAGÜNDÜZ

  4. Android sistemlerde derin öğrenme tabanlı kötü amaçlı yazılım tespit sistemi

    Deep learning based malware detection system on android systems

    ESRA ÇALIK BAYAZIT

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. BUKET DOĞAN

    PROF. DR. ÖZGÜR KORAY ŞAHİNGÖZ

  5. Android platformunda zararlı yazılım analizi için hibrit kum havuzu geliştirilmesi

    Implementing hybrid android sandbox for malware analysis on android platform

    MERT CAN COŞKUNER

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MURAT İSKEFİYELİ