Geri Dön

Gender recognition and age estimation based on human gait

Yürüyüş biçiminden cinsiyet ve yaş tespiti

  1. Tez No: 594070
  2. Yazar: MURAT BERKSAN
  3. Danışmanlar: DR. ÖĞR. ÜYESİ EMRE SÜMER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Başkent Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 82

Özet

Bu çalışmada, Evrişimsel Sinir Ağları'nın (ESA) yürüyüş biçimi tabanlı cinsiyet ve yaş tespiti alanlarında uygulanabilirliği incelenmiştir. Bu amaçla farklı ağlar değerlendirilmiş olup, kaynak bir ağ seçilmiştir. Baz alınan bu ağ üzerinde farklı mimari seçenekler ve üst değişkenler ile ilgili deneyler yapılarak değişiklikler yapılmıştır. Her bir problem için benzer yapılı ancak farklı iki mimari önerilmiştir. Deneyler yürüyüş biçimi silueti ortalamasını girdi olarak alıp gerçekleştirilmiştir. Cinsiyet tespitinde sonuç olarak %97.45 doğruluk elde edilmiş olup, yaş tespitinde 5.74 yıl ortalama mutlak hata sonucu alınmıştır. Bir özellik tanımlayıcı olan yürüyüş biçimi silueti ortalamasını girdi alarak ESA kullanımı literatürde az çalışılmış bir konudur. Bu yaklaşımı yürüyüş biçimi tabanlı cinsiyet tespiti alanında kullanan tek bir çalışma bulunmakla birlikte, yürüyüş biçimi tabanlı yaş tespiti problemini çözen bir yaklaşıma literatürde rastlanmamıştır. Sonuçlar literatürde var olan çalışmalarla karşılaştırıldığında önerilen mimarilerin başarılı bir performans sergilediği görülmektedir. Ayrıca, deneyler sırasında alınan sonuçlar mimari yapı ile üst parametrelerin performansı nasıl etkilediğine dair anlayış sağlamaktadır. Bütün bunlar göz önünde bulundurulduğunda, alınan sonuçlar yürüyüş özellik tanımlayıcısının bu problem alanlarında kullanımı hakkında anlayış sağlamakla birlikte, ESA'nın bu problem alanlarında kullanımı için yol göstermektedir.ANAHTAR SÖZCÜKLER: Cinsiyet tespiti, Yaş tespiti, Evrişimsel Sinir Ağları, Yürüyüş biçimi, Yürüyüş Biçimi Silueti

Özet (Çeviri)

In this study, the feasibility of Convolutional Neural Networks (CNN) for gait based gender recognition and age estimation problems were investigated. For this purpose, different networks were evaluated and a basis was selected. Further adjustments were made on the basis network by experimenting on architectural options and hyperparameters. Two distinct yet similar architectures were proposed for each problem. The experiments were conducted by using gait silhouette average which is a feature descriptor as input. The overall accuracy was computed to be 97.45% using the proposed CNN architecture for gender recognition and 5.74 years mean absolute error for age estimation. Using CNN with gait silhouette average as an input is an understudied subject in the literature for these problem domains. While there is one study that uses this approach for gait based gender recognition, there are no studies evaluating CNN for gait based age estimation. The results show successful performance comparable to existing studies. Besides, the experimental results provide insight on how network structure and hyperparameters affect performance. Considering this, obtained outcome allows to gain insight about the problem domain of using gait feature descriptor for gender recognition and age estimation, and provides guidance about deciding on a CNN network in these problem domains. KEYWORDS: Gender Recognition, Age Estimation, Convolutional Neural Networks, Gait, Gait Silhouette

Benzer Tezler

  1. İnsan sesinden hibrit spektral özniteliklerle konuşmacı özelliklerinin tahmini

    Prediction of speaker characteristics with hybrid spectral features from human voice

    KAYA AKGÜN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKütahya Dumlupınar Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ŞERİF ALİ SADIK

  2. Enabling dynamics in face analysis

    Başlık çevirisi yok

    HAMDİ DİBEKLİOĞLU

    Doktora

    İngilizce

    İngilizce

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversiteit van Amsterdam

    PROF. DR. THEO GEVERS

    PROF. DR. A. W. M. SMEULDERS

  3. Ses sinyallerinden yaş grubu ve cinsiyet bilgisinin tahmin edilmesi

    Estimating age group and gender information from speech signals

    ABDULHALIK OĞUZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Bilim ve TeknolojiSiirt Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ YILMAZ KAYA

  4. Age and gender classification from ear images

    Kulak imgelerinden yaş ve cinsiyet sınıflandırma

    DOĞUCAN YAMAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HAZIM KEMAL EKENEL

  5. Türkiye'de su hakkı

    The right to water in Turkey

    YILDIZ AKEL ÜNAL

    Doktora

    Türkçe

    Türkçe

    2021

    HukukGalatasaray Üniversitesi

    Kamu Hukuku Ana Bilim Dalı

    PROF. DR. ERDOĞAN BÜLBÜL