Geri Dön

Assessment of features and classifiers forbluetooth rf fingerprinting

Bluetooth sinyallerinin RF parmak izi yöntemi ile sınıflandırılmasında öznitelikler ve sınıflandırıcıların değerlendirilmesi

  1. Tez No: 597109
  2. Yazar: AYSHA B. M. ALI AYSHA B. M. ALI
  3. Danışmanlar: PROF. DR. ALİ KARA
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Mühendislik Sistemlerinin Modellenmesi ve Tasarımı Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 115

Özet

Bu tez çalışması, kablosuz ağların güvenliği için fiziksel katmanda özgün yöntemler geliştirilmesi üzerinedir. Bunun için, RF parmak izi kullanılarak, Bluetooth (BT) sinyalleri üzerinde çalışılmıştır. RF parmak izi tespiti için kapsamlı BT sinyalleri kullanılmıştır. Bu kapsamda, 20 farklı marka, model ve seride BT cihazına yönelik kayıtlar toplanmıştır. Her bir cihazdan da 150 sinyal kaydı alınmıştır. Bu çalışma ile Hilbert-Huang Dönüşümü (HHT) ilk defa BT cihaz kimliklendirmesinde kullanılmıştır. Amprik Kip Ayrıştırma (EMD) ve Hilbert Dönüşümü kullanımı ile HHT tekniği, zaman-frekans-enerji dağılımları üzerinde çalışma imkanı vermektedir. Sinyal enerji zarfı kullanılması suretiyle geçici rejim sinyalleri bazı iyileştirmeler ile tespit edilmektedir. Geçici rejim sinyalleri ile zaman-frekans-enerji dağımları üzerinden toplam 13 farklı öznitelik çıkarılmaktadır. Öznitelikler, kullanılabilirlik açısından ön işleme tabi tutulmaktadırlar. Ardından aynı veri seti ve öznitelikler üzerinde farklı sınıflandırıcılar çalıştırılarak, sınıflandırıcıların başarım analizi de ilk defa bu çalışmada sunulmaktadır. Sınıflandırıcı başarım analizleri 8 dB ile 30+ dB arasında farklı sinyal-gürültü oranlarında yapılmaktadır. Sınıflandırma başarım sonuçları yöntemin kullanılabilirliğini göstermektedir.

Özet (Çeviri)

In this thesis, we introduced a novel technique to enhance the security at physical layer of wireless networks. This is based on the use of radio freqency (RF) fingerprinting for Bluetooth (BT) signals. BT signal records are acquired from twenty different cell phone brands, models, and serial numbers. One hundred fifty records are collected from each device. For the first time, Hilbert Huang Transform (HHT) are used for the BT device identification with such huge data set. By means of the signals' energy envelopes with some improvements, the transient signals are detected accurately. Through the Empirical mode decomposition (EMD) and Hilbert Transform (HT), the HHT is implemented to obtain Time Frequency Energy Distributions (TFED) of the detected transients. Thirteen features are extracted from the signals' transients and their TFEDs. The extracted features are pre-processed to enhance their usability. Different classifiers are employed with the extracted features for device identification, and comparative analysis of the classifiers is also provided. The classifier performance is examined for different SNR levels from 8 dB to 35+ dB . The identification performance demonstrates the feasibility of the method.

Benzer Tezler

  1. Prenatal risk assessment of down syndrome by probabilistic classifiers

    Olasılıksal sınıflandırıcılar ile down sendromunun doğum öncesi riskinin hesaplanması

    ÖMER UZUN

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. FİKRET GÜRGEN

  2. Predicting the risk of seizing state lands using data mining techniques

    Veri madenciliği teknikleri kullanarak kamu alanlarının işgali riskinin tahmin edilmesi

    HUSSEIN ALI AHMED AHMED

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankaya Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    PROF. DR. ERDOĞAN DOĞDU

  3. Neuro classifiers for condition and bearing health assessment of an electric motor

    Elektrik makinasında durum ve rulman sağlığı değerlendirmesi için nöro sınıflandırıcılar

    MINA GHORBAN ZADEH BADELI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DUYGU BAYRAM KARA

  4. Multi-lingual depression-level assessment from conversational speech using acoustic and text features

    Başlık çevirisi yok

    YASİN SERDAR ÖZKANCA

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÖzyeğin Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. CENK DEMİROĞLU

  5. Farklı dalga boylu görüntülerle buğday sınıflandırılması

    Wheat classification with different wavelength images

    DUYGU ZEYNEP DEMİREZ ÖRS

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Elektrik ve Elektronik MühendisliğiEskişehir Osmangazi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ EROL SEKE