Derin öğrenmeye dayalı güçlü yüz tanıma sistemi için gan ile veri çoğaltma
Data augmentation with gan for robust face recognition system based on deep learning
- Tez No: 617360
- Danışmanlar: DR. YAHYA ŞİRİN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: Türkçe
- Üniversite: İstanbul Sabahattin Zaim Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 77
Özet
Yüz tanıma sistemi, kişiyi dijital bir görüntüden doğrulamak veya tanımlamak için kullanılan biyometrik sistem türüdür. Yüz tanıma sistemleri güvenlik amaçlı kullanılmalarının yani sıra eğitim, sağlık ve buna benzer birçok alanda da kullanılırlar. Litaratür'de geçmişten günümüze birçok yüz tanıma yöntemi önerilmiştir. Bunları iki gruba ayırabiliriz. Geleneksel yöntemler ve Makine öğrenmesi veya Derin öğrenme (DÖ) tekniklerine dayalı modern yöntemler. Geleneksel yüz tanıma yöntemleri çeşitli poz, aydınlatma, tıkanıklık vs. gibi farklı koşullar altında çekilmiş görüntülerde oldukça düşük oranda performans göstermektedirler. Bu oranı iyileştirmek amacıyla modern yüz tanıma yöntemleri önerilmiştir. Modern yüz tanıma yöntemleri DÖ tekniklerine dayanmaktadır. DÖ'ye dayalı yüz tanıma sistemleri büyük miktarda veri ile eğitildikleri için yüksek doğruluk performansı sergilemektedirler. DÖ modelleri ne kadar fazla veri ile eğitilirlerse, sistemin doğruluk performansının artma olasılığı o kadar fazla olur. Çalışmamız iki bölümden oluşmaktadır. İlk bölümde DÖ'ye dayalı yüz tanıma sistemi oluşturulacaktır. Yüz tanıma sistemimiz sırasıyla: tespit aşaması, hizalama aşaması, yüze ait 128 temsillin (embeddings) üretilmesi, sınıflandırma aşaması, doğrulama ve kümeleme olarak altı ana aşamadan oluşmaktadır İkinci bölümde, yüz tanıma sistemimizin doğruluk performansında veri artırma tekniklerinin etkisini analiz etmek için Derin Evrişimsel Çekişmeli Üretici Ağlar (Deep Convolutional Generative Adversarial Networks) ile sentetik yüzler üretilecektir. Her iki bölümde gerçekleştirilen eğitim ve test işlemlerinde LFW veri seti kullanılmıştır. Test işlemlerinden elde edilen sonuçlar göre, önerilen veri artırma tekniği sonuca olumlu yansımış ve yüz doğrulamada %2.00, yüz sınıflandırmada ise %2.26'lık bir artış elde etmiştir. Ancak DEÇÜA modeli küçük veri seti ile eğitildiğinden dolayı, önerilen veri artıma tekniğinin etkisi beklendiği oranda olmamıştır. Aynı model daha büyük veri seti ile eğitildiği takdirde yüz tanıma sisteminde etkisinin daha yüksek olacağını tahmin ediyoruz.
Özet (Çeviri)
Since 1970's, facial recognition is one of the most studied subjects in image processing and biometry. Face recognition technology aims to perceive and identify faces in images in a manner similar to the operation of human visual system in computers. With the development of these systems, it is directed to build a more reliable and easier to live world. Many techniques of facial recognition have been proposed since its first development but nowadays best performing systems are based on Deep Learning. The high performance of deep learning based facial recognition systems is mainly dependent on the size of the datasets in which the model and classifier are trained. Therefore, the main purpose of this study is to generate synthetic faces using DCGANs in order to enlarge the dataset and analyze the effects of facial recognition system on verification and classification tasks. In order to perform the analysis properly, it is therefore essential to establish a robust face recognition system. İn this case, another objective of our study is to build a robust face recognition system. Experimental results shows that the proposed data augmentation technique increases the accuracy of face recognition system. In the face verification process %2.00 increment was obtained. Whereas in classification tasks 2.26%.
Benzer Tezler
- Deep learning based three dimensional face expression recognition using geometry images from three dimensional face models
Üç boyutlu yüz modellerinden elde edilen geometri görüntüleri kullanılan derin öğrenme tabanlı üç boyutlu yüz ifadelerini tanıma
NEŞE GÜNEŞ
Yüksek Lisans
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ULUĞ BAYAZIT
- Detection and recognition face framework by using conventional neural network CNN
Başlık çevirisi yok
WISAM ABBAS HUSSEIN AL-SAADI
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SEFER KURNAZ
- Application of a voting-based ensemble method for recognizing seven basic emotions in real-time webcam video images
Gerçek zamanlı web kamerası video görüntülerinde yedi temel duygunun tanınmasına yönelik oylamaya dayalı topluluk yönteminin uygulanması
AHMET TUNAHAN ŞANLI
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankaya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MURAT SARAN
- Mathematical model-based clinical decision support system algorithm design study that can support the diagnosis of celiac disease
Çölyak hastalığının teşhisine destek verebilecek matematik model tabanlı kds algoritması tasarımı
ELİF KESKİN BİLGİÇ
Doktora
İngilizce
2024
Mühendislik Bilimleriİstanbul Üniversitesi-CerrahpaşaBiyomedikal Mühendisliği Ana Bilim Dalı
DR. İNCİ ZAİM GÖKBAY
DOÇ. DR. YUSUF KAYAR
- Yüz analizine dayalı derin öğrenme tabanlı bir ilgi tespit sisteminin gerçekleştirilmesi
Development of an interest detection system based on facial analysis using deep learning
GÖZDE YOLCU ÖZTEL
Doktora
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SERAP KAZAN