İnsansız hava araçları ve uydu görüntülerinden elde edilen veri seti ile havaalanlarının tespitinin yapılmasında SSD ve Faster R-CNN algoritmalarının karşılaştırılması
Comparison of SSD and Faster R-CNN algorithms to detect the airports with data set which obtained from unmanned arial vehicles and satellite images
- Tez No: 619628
- Danışmanlar: DR. ÖĞR. ÜYESİ SABAHATTİN KEREM AYTULUN
- Tez Türü: Yüksek Lisans
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: Beykent Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Endüstri Mühendisliği Bilim Dalı
- Sayfa Sayısı: 92
Özet
Günümüzde görüntü işleme çalışmalarında birçok faklı sektörde, özellikle sağlık, üretim ve askeri alanlarda, doğrudan insan yaşantısında çeşitli amaçlarla kullanılmaya başlanmıştır. Derin öğrenme algoritmalarının gelişmesi ve bilgisayarlı görüde kullanılmaya başlanması özellikle askeri alandaki kritik hedef, önemli konum ve stratejik bölge tespiti gibi çalışmalara hız kazandırmıştır. Bu çalışmada Airport olarak adlandırılan havaalanlarının, uçak iniş pistleri üzerinden tespiti gerçekleştirilmiştir. Hem orta ve yüksek irtifalı insanız hava araçlarından hem de uydu görüntüleri kullanılarak eğitim test ve değerlendirme veri setleri oluşturulmuştur. Tespit yapılması sürecinde SSD-Single Shot Multibox algoritması ve Faster R-CNN algoritması yeniden eğitilerek kullanılmıştır. Her iki algoritmanın sonuçları doğruluk oranı, duyarlılık, özgüllük, yanlış pozitif oranı, yanlış negatif oranı, doğru tahmin oranı, F puanı, hata oranı, sonuç ve eğitim süresi gibi değerlendirme kriterleri kapsamında değerlendirilmiştir. Değerlendirme veri seti üzerinde; SSD mimarisi ile %76,61 doğruluk oranıyla, Faster R-CNN mimarisinde ise %99,52 doğruluk oranı ile görüntü tespit sonucu elde edilmiştir. Söz konusu çalışma ile iki mimariden hangisinin insansız hava araçları ve uydu görüntülerinde kritik bölge tespitinde ne derece başarılı olduğu ortaya çıkarılmıştır.
Özet (Çeviri)
Today, image processing has been used in many different sectors, especially in health, production and military fields, for various purposes directly in human life. The development of deep learning algorithms and starting to use of computerized vision has accelerated the studies such as critical target, important location and strategic region determination especially in the military field. In this study, the airport has been determined on the landing runways. Training test and evaluation data sets were created by using both medium and high-altitude human aircraft and satellite images. SSD-Single Shot Multibox algorithm and Faster R-CNN algorithm were used by re-training during the determination process. The results of both algorithms were evaluated within the extend of evaluation criteria such as accuracy, sensitivity, specificity, false positive rate, false negative rate, positive pred value, F score, error rate, result and training time. The image detection accuracy with SSD algorithm was 76,61%, with Faster R-CNN algorithm the image detection accuracy was 99.52% according to valuation dataset. With this study, which of the two architectures has been revealed to be successful in determining critical areas in unmanned aerial vehicles and satellite images.
Benzer Tezler
- Uzaktan algılama teknolojileri kullanılarak denizlerde kirliliğin izlenmesi: Marmara Denizi örneği
Monitoring of pollution in the sea using remote sensing technologies: The case of the Sea of Marmara
BUSE TIRMANOĞLU
Yüksek Lisans
Türkçe
2022
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. NEBİYE MUSAOĞLU
- Investigating olive trees by monitoring phenological stages using multi-modal satellite sensor data
Çok-modlu uydu sensör verileri kullanılarak fenolojik aşamalarının izlenmesiyle zeytin ağaçlarının araştırılması
HAYDAR MUHAMMED AKÇAY
Doktora
İngilizce
2024
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. ŞİNASİ KAYA
- İnsansız hava aracı görüntülerinden kentsel alanlarda araç tespiti
Vehicle detection in urban areas from unmanned aerial vehicle images
MÜSLÜM ALTUN
Yüksek Lisans
Türkçe
2018
Jeodezi ve FotogrametriHacettepe ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. MUSTAFA TÜRKER
- Semantic land cover and land use classification using deep convolutional neural networks
Derin evrişimsel sinir ağları ile arazi kullanımı ve arazi örtüsünün anlamsal sınıflandırılması
BERK GÜNEY
Yüksek Lisans
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. ELİF SERTEL
- Küresel konumlama sistemi kaybı olan ortamlarda insansız hava araçları için geliştirilen alternatif seyrüsefer tekniği
Alternative navigation method for unmanned aerial vehicles in global positioning system denied environments
ÇAĞLA ŞAHİN
Yüksek Lisans
Türkçe
2020
Elektrik ve Elektronik MühendisliğiTOBB Ekonomi ve Teknoloji ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. İMAM ŞAMİL YETİK