Geri Dön

Trajectory planning and obstacle avoidnace for omnidirectinonal robots

Her yönde hareket edebilen robotlar için yol planlama ve engelden kaçınma

  1. Tez No: 619691
  2. Yazar: MOHAMMED RABEEA HASHIM AL- DAHHAN
  3. Danışmanlar: DOÇ. DR. HÜSNÜ DENİZ BAŞDEMİR, PROF. DR. KLAUS VERNER SCHMİDT
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: Çankaya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 137

Özet

Path planning algorithms for mobile robots are concerned with finding a feasible path between a start and goal location in a given environment without hitting obstacles. In the existing literature, important performance metrics for path planning algorithms are the path length, computation time and path safety, which is quantified by the minimum distance of a path from obstacles. The subject of this thesis is the development of path planning algorithms that consist of straight-line segments. Such paths are suitable for omni-directional robots and can as well be used as initial solution paths for applying smoothing. As the main contribution of the thesis, we develop three new planning methodologies that address all of the stated performance metrics. The original idea of the first approach is the pre-processing of the environment map by increasing the obstacle region. That is, when applying sampling-based path planning algorithms such as PRM* (probabilistic roadmap), RRT* (rapidly exploring random tree) or FMT (fast marching tree), node samples in irrelevant regions of the environment are avoided. This measure speeds up the path computation and increases path safety. The second approach proposes the computation of a modified environment map that confines solution paths to the vicinity of the Voronoi boundary of the given environment. Using this modified environment map, we adapt the sampling strategy of the popular path planning algorithms PRM, PRM* and FMT. As a result, we are able to generate solution paths with a reduced computation time and increased path safety. Different from the first two approaches, the third approach uses information about the topology of the environment from the generalized Voronoi diagram of the environment. Specifically, initial solution paths that follow Voronoi edges are iteratively refined by introduce shortcuts and by adding new waypoints to remove corners in the path. The thesis performs comprehensive computational experiments to illustrate the advantages of the proposed approaches. In particular, the third approach proves to be most promising since it addresses the properties of environments for mobile robots.

Özet (Çeviri)

Path planning algorithms for mobile robots are concerned with finding a feasible path between a start and goal location in a given environment without hitting obstacles. In the existing literature, important performance metrics for path planning algorithms are the path length, computation time and path safety, which is quantified by the minimum distance of a path from obstacles. The subject of this thesis is the development of path planning algorithms that consist of straight-line segments. Such paths are suitable for omni-directional robots and can as well be used as initial solution paths for applying smoothing. As the main contribution of the thesis, we develop three new planning methodologies that address all of the stated performance metrics. The original idea of the first approach is the pre-processing of the environment map by increasing the obstacle region. That is, when applying sampling-based path planning algorithms such as PRM* (probabilistic roadmap), RRT* (rapidly exploring random tree) or FMT (fast marching tree), node samples in irrelevant regions of the environment are avoided. This measure speeds up the path computation and increases path safety. The second approach proposes the computation of a modified environment map that confines solution paths to the vicinity of the Voronoi boundary of the given environment. Using this modified environment map, we adapt the sampling strategy of the popular path planning algorithms PRM, PRM* and FMT. As a result, we are able to generate solution paths with a reduced computation time and increased path safety. Different from the first two approaches, the third approach uses information about the topology of the environment from the generalized Voronoi diagram of the environment. Specifically, initial solution paths that follow Voronoi edges are iteratively refined by introduce shortcuts and by adding new waypoints to remove corners in the path. The thesis performs comprehensive computational experiments to illustrate the advantages of the proposed approaches. In particular, the third approach proves to be most promising since it addresses the properties of environments for mobile robots.

Benzer Tezler

  1. Developing mobile robot obstacle avoidance methods with model-based and learning-based methods

    Mobil robotlarda model tabanlı ve öğrenme tabanlı engelden kaçınma yöntemleri geliştirilmesi

    AYKUT ÖZDEMİR

    Doktora

    İngilizce

    İngilizce

    2023

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Ana Bilim Dalı

    PROF. DR. OVSANNA SETA ESTRADA

  2. İnsansı robotlarda yürüme, merdiven çıkma ve engelden kaçma için yeni bir hareket algoritmasının geliştirilmesi

    Development of a new motion algorithm for walking, stair climbing and obstacle avoidance in humanoid robots

    EMRE ULUŞAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Mekatronik MühendisliğiFırat Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞEGÜL UÇAR

  3. Endüstriyel zaman robotlarda optimal yörünge kontrolü

    Time optimal path control for industrial robots

    MEHMET ÜNLÜEL

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞENİZ ERTUĞRUL

  4. Designing controllers for path planning applications to mobile robots with head-cameras

    Mobil robotlara yol planlama uygulamaları için tepe kameralar ile kontrolörler tasarlama

    EMRAH DÖNMEZ

    Doktora

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ADNAN FATİH KOCAMAZ

  5. Emergency safe landing trajectory planning and control of a damaged airplane

    Hasarlı bı̇r uçağın acı̇l güvenlı̇ ı̇nı̇ş yörünge planlaması ve kontrolü

    DAVOOD ASADIHENDOUSTANI

    Doktora

    Farsça

    Farsça

    2014

    Havacılık MühendisliğiAmirkabir University of Technology

    Havacılık ve Uzay Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHDİ SABZEHPARVAR