Geri Dön

Vehicle type classification with deep learning

Derin öğrenme ile araç tipi sınıflandırma

  1. Tez No: 631254
  2. Yazar: NERİMAN YARAŞ
  3. Danışmanlar: DOÇ. DR. MUSTAFA ÖZUYSAL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 77

Özet

Bu tez çalışmasında, taşıt tipi sınıflandırma problemi farklı açılardan incelenmiştir. Bir imgeyi dokuz araç türünden biri olarak sınıflandırmak için imge boyutu, veri kümelerindeki örnek sayısı gibi farklı parametreleri kullanan bir derin öğrenme tekniği uygulanmıştır. Eğitimli modeller arasında en uygun olanını seçtikten sonra, sorunu hiyerarşik bir ağaç sınıflandırma problemine dönüştürerek üç farklı ağaç hiyerarşisinde analiz ettik. Deneyler, hiyerarşik ağaçların yapraklarına karşılık gelen dokuz sınıfın her biri için olasılıkları hesaplamak için üç hesaplama yöntemi kullanılarak gerçekleştirilmiştir. Bu çalışmalar, ResNet34 mimarisinde 224 görüntü boyutuna göre Stanford veri seti kullanılarak seviye-2 ile hiyerarşik ağaçta geleneksel aritmetik ortalama hesaplama uygulandığında 0.762812 ortalama doğruluğunun elde edildiği sonucuna varmaktadır.

Özet (Çeviri)

In this thesis, we studied the vehicle type classification problem from several perspectives. We apply a deep learning technique with different parameters such as image size and the number of images in data sets to the classification of an image as one of the nine vehicle types. After choosing the most appropriate one among trained models, we convert the problem into a hierarchical tree classification problem so that it could be analyzed in three different tree hierarchies. Experiments are performed using three computational methods for calculating possibilities for each of the nine classes that correspond to the leaves of the hierarchical trees. These studies result in a conclusion that 0.762812 average accuracy is obtained when traditional arithmetic mean computation applied on the hierarchical tree with level-2 using the Stanford Dataset by 224 image size on ResNet34 architecture.

Benzer Tezler

  1. Otonom araçlar için derin öğrenme ile çoklu şerit algılama ve şerit tipi sınıflandırma sistemi

    Multi-lane detection and lane type classification system with deep learning for autonomous vehicles

    SİNAN ÖZEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AYSUN TAŞYAPI ÇELEBİ

  2. Machine learning approaches for internet of things based vehicle type classification and network anomaly detection

    Nesnelerin interneti tabanlı araç tipi sınıflandırma ve ağ anomalisi tespiti için makine öğrenmesi yaklaşımları

    BURAK KOLUKISA

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAbdullah Gül Üniversitesi

    Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. VEHBİ ÇAĞRI GÜNGÖR

  3. Traffic sign recognition with machine learning methods

    Makine ile öğrenme yöntemleriyle trafik işareti tanıma

    EMİN ALPER SÜRÜCÜ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HATİCE DOĞAN

  4. İnsansız Hava Aracı tespiti ve sınıflandırılması için derin öğrenme tabanlı tekniklerin geliştirilmesi

    Development of deep learning based techniques for Unmanned Aerial Vehicle detection and classification

    EMRULLAH KIZILAY

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    DOÇ. DR. İLHAN AYDIN

  5. Machine learning based for insurance claims fraud detection technique for safeguarding the health industry

    Sağlık sektörünü koruma amaçlı makine eğitimi tabanlı sigorta talep dolandırıcılığı tespit tekniği

    GHİNA ÖZDEMİR

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Aydın Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. RAFET AKDENİZ