Bir ve iki boyutlu biyomedikal işaretlerin DCT tabanlı analizi
DCT based analysis of 1D and 2D biomedical signal
- Tez No: 636591
- Danışmanlar: PROF. DR. AHMET SERTBAŞ
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: İstanbul Üniversitesi-Cerrahpaşa
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 198
Özet
Bu çalışmada, AKD (Ayrık Kosinüs Dönüşümü-DCT) özellik çıkarım yöntemine dayanan 1 boyutlu (1B) ve 2 boyutlu (2B) biyomedikal işaret analizleri yapılarak yüksek doğruluklu epilepsi hastalığı teşhisi gerçeklenmiştir. Epilepsi hastalığı teşhisi amacıyla 1 boyutlu işaret analizi için EEG (Elektroensefalografi) verileri, 2 boyutlu işaret analizi için MRG (Magnetik Resonans Görüntüleme-MRI) verileri kullanılmıştır. 1 boyutlu EEG verilerine AKD ve ortalama, varyans, standart sapma, basıklık, çarpıklık gibi istatistiksel yöntemleri uygulanarak; 2 boyutlu MRG verilerine ise AKD ve ortalama istatistiksel yöntemi uygulanarak özellik vektörleri çıkarılmıştır. Elde edilen öznitelik vektörlerine TBA (Temel Bileşen Analizi-PCA), DAA (Doğrusal Ayırım Analizi-LDA), İleriye Doğru Seçim ve Geriye Doğru Seçim yöntemleri uygulanarak en etkin özellikler seçilmiştir. EEG, MRG ve EEG-MRG birleşik özellikleri kullanılarak Sağlıklı / Epilepsi şeklinde 2 kümeli sınıflandırma yapılmıştır. Tezde AKD özellik çıkarımı ile ADD (Ayrık Dalgacık Dönüşümü) karşılaştırılmış; 1B ve 2B biyomedikal işaretleri YSA, SVM, KNN ve RF makine öğrenme yöntemleri ile sınıflandırılmıştır. Ayrıca derin öğrenme ağında, LSTM ve CNN mimarilerinde veriler analiz edilmiştir. Tezimizde, EEG-MRG birleşik özelliklerinin epilepsi hastalığının teşhisinde çok etkin bir şekilde kullanılabileceği tespit edilmiştir.
Özet (Çeviri)
In this study, 1-dimensional (1D) and 2-dimensional (2D) biomedical signal analysis based on the Discrete Cosine Transform (DCT) feature extraction method was performed to diagnose high-accuracy epilepsy disease. For the diagnosis of epilepsy, Electroencephalogram (EEG) data were used for 1-dimensional (1D) signal analysis and Magnetic Resonance Imaging (MRI) data were used for 2-dimensional (2D) signal analysis. In addition to DCT, statistical methods such as mean, variance, standard deviation, kurtosis, skewness were applied to 1-dimensional EEG data; on the other hand, feature vectors were obtained by applying DCT and mean statistical method to 2D MRI data. The most useful features were selected by applying PCA, LDA, Forward Selection and Backward Selection methods to the obtained feature vectors. EEG, MRI and EEG-MRI combined features of Healthy, and Epilepsy classification was made as a two-cluster. In the thesis, DCT feature extraction and DWT (Discrete Wavelet Transform) were compared. 1D and 2D biomedical signals are classified by ANN, SVM, KNN and RF machine learning methods. In addition, our data were analyzed in LSTM and CNN architectures in the deep learning network. In the dissertation, it has been established that the combined features of EEG-MRI can be used very effectively in the diagnosis of epilepsy.
Benzer Tezler
- Biyomedikal İşaret ve Görüntülerde Görgül Kip Ayrışımı
Empirical Mode Decomposition on Biomedical Signals and Images
ÖMER FARUK KARAASLAN
Yüksek Lisans
Türkçe
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. GÖKHAN BİLGİN
- SYMPES yöntemiyle kanser hastalıklarında önemli genlerin saptanması ve kanser türlerinin sınıflandırılması
Detection of significant genes in cancer diseases and classification of cancer types by SYMPES method
ALİ SARIKAŞ
Doktora
Türkçe
2020
Biyomühendislikİstanbul Üniversitesi-CerrahpaşaBiyomedikal Mühendisliği Ana Bilim Dalı
PROF. DR. BEKİR SIDDIK BİNBOĞA YARMAN
DR. ZELİHA GÖRMEZ
- Biyomedikal işaretlerin sınıflandırılması için akıllı tekniklerin Labview ortamında gerçeklenmesi
Realization of intelligent techniques for classification of biomedical signals in the Labview
DUYGU KAYA
Doktora
Türkçe
2018
Elektrik ve Elektronik MühendisliğiFırat ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MUSTAFA TÜRK
- Modelling the neocortical pyramidal neurons and their group behaviour
Neokortikal piramid nöronların modellemesi ve grup davranışları
SADEEM NABEEL SALEEM KBAH
Yüksek Lisans
İngilizce
2013
Biyomühendislikİstanbul Teknik ÜniversitesiElektronik-Haberleşme Eğitimi Ana Bilim Dalı
DOÇ. DR. NESLİHAN SERAP ŞENGÖR
- EKG sinyallerinden elde edilen görüntülerin hibrit derin öğrenme yöntemleri kullanılarak sınıflandırılması
Classification of images obtained from ECG signals using hybrid deep learning methods
ONUR AKCAN
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Uygulamalı Bilimler ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
DOÇ. DR. SÜLEYMAN UZUN
DR. ÖĞR. ÜYESİ ALİ OSMAN SELVİ