Uydu imgelerine derin öğrenme tabanlı süper çözünürlük yöntemlerinin uygulanması ve imgelerin iyileştirilmesi
Application of deep learning based super resolution methods to satellite images and improvement of images
- Tez No: 638016
- Danışmanlar: DOÇ. DR. DERYA AVCI
- Tez Türü: Yüksek Lisans
- Konular: Bilim ve Teknoloji, Science and Technology
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: Fırat Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Ekobilişim Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 85
Özet
Askeri ve sivil hayatta önemli tüm uygulamalar için kullanılan görüntünün çözünürlüğünün yüksek olması çok önemlidir. Uydu imgeleri barındıran çalışmalarda süper çözünürlük ile iyileştirilmiş imgelerin kullanımı bina tespiti gibi uygulamalarda gereklidir. Düşük çözünürlüklü görüntünün giriş olarak verildiği süper çözünürlük algoritmalarında çeşitli iyileştirme adımları neticesinde çıktı olarak yüksek çözünürlüklü görüntü elde edilir. Kullanıma açık uydu görüntülerinden alınan 6 sınıfa ayrılmış toplam 900 imge üzerinde, derin öğrenme tabanlı evrişimsel sinir ağları ile süper çözünürlük iyileştirilmesinin performansı analiz edilmiştir. Veri seti üzerinde derin öğrenme için test ve eğitim verileri ayrılmıştır. Verilere AlexNet, DenseNet201, ResNet50, SqueezeNet, Vgg16, Vgg19 olmak üzere toplam 6 derin öğrenme mimarisi ayrı ayrı uygulanmıştır. Süper çözünürlük adımı öncesinde ve sonrasında doğru sınıflandırılmış veri oranının kontrolü için evrişimsel sinir ağları uygulanmıştır. Sınıflandırma sonuçları karşılaştırılmıştır. Sınıflandırılma başarısı 6 sınıflandırılma mimarisi için en düşük %2,4 ve en yüksek %3,6 oranında arttırılmış olduğu kanıtlanmıştır. Sınıflandırma sonucunda evrişimsel sinir ağları öğrenme özellikleri süper çözünürlük sayesinde iyileştirilmiştir.
Özet (Çeviri)
High resolution of the image used for all important applications in military and civil life is very important. In works with satellite images, the use of images enhanced with super resolution is necessary in applications such as building detection. In the super resolution algorithms where the low-resolution image is given as input, high resolution image is obtained as a result of various improvement steps. The performance of super resolution improvement with deep learning based convolutional neural networks on 900 images taken from available satellite images was analyzed. Test and training data are reserved for deep learning on the dataset. A total of 6 softmax functions (AlexNet, DenseNet201, ResNet50, SqueezeNet, Vgg16, Vgg19) were applied to the data separately. Evolutionary neural networks were applied to control the number of correctly classified data before and after the super resolution step. The classification results are compared and as a result of the classification, the learning properties of the convolutional neural networks are increased by super resolution. Classification success has proven to be increased by the lowest 2.4% and the highest 3.6% for the 6 classification architectures.
Benzer Tezler
- Segmentation of satellite sar images using squeeze and attention based deep networks
Uydu-bazlı sar imgelerınde kısık dıkkat odaklı derin ögrenme kullanan segmentasyon algoritması
ELMIRA KHAJEI
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. İBRAHİM KÖRPEOĞLU
- Bulanık su altı görüntülerinde derin öğrenme tabanlı balık tespiti
Deep learning based fish detection in turbid underwater images
TANSEL AKGÜL
Yüksek Lisans
Türkçe
2020
Bilim ve Teknolojiİstanbul Teknik ÜniversitesiUydu Haberleşmesi ve Uzaktan Algılama Ana Bilim Dalı
DOÇ. DR. BEHÇET UĞUR TÖREYİN
- Fine-tuning convolutional neural networks for maritime vessel classification, verification and recognition
Evrişimli sinir ağlarında eğitim transferi ile gemi sınıflandırma, doğrulama ve tanıma
CAHİT DENİZ GÜRKAYNAK
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBahçeşehir ÜniversitesiBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
PROF. DR. NAFİZ ARICA
- Global gravity field recovery from low-low satellite-to-satellite tracking with enhanced spatiotemporal resolution using deep learning paradigm
Global gravite alanının derin öğrenme paradigması kullanarak alçak uydudan alçak uyduya izleme ile iyileştirilmiş çözünürlükte belirlenmesi
METEHAN UZ
Doktora
İngilizce
2023
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. ORHAN AKYILMAZ
- Kültürel afişlerde tasarım ilkeleri kültürel afiş çalışmaları
Başlık çevirisi yok
NAMIK KEMAL SARIKAVAK