Geri Dön

Machine learning and signal processing on recognizing epileptic seizure patterns

Epileptik kriz örüntülerinin tanınmasında makine öğrenmesi ve sinyal işleme

  1. Tez No: 640380
  2. Yazar: BARKIN BÜYÜKÇAKIR
  3. Danışmanlar: PROF. DR. ADNAN KAYA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: İzmir Katip Çelebi Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 76

Özet

Makine öğrenimi yöntemleri, bir mekanizmanın girdileri ve çıktıları arasında mevcut ancak belirsiz bir ilişkinin olduğu durumlarda öne çıkmaktadır. En yaygın beyin bozukluklarından biri olan epilepsi de böyle bir durumdur. Bu nedenle, makine öğrenme algoritmalarının öngörücü yetenekleri ile birlikte sinyal işleme tekniklerinin açıklayıcı gücünden yararlanmak, EEG kayıtlarından epileptik nöbetleri saptamak ve tahmin etmek için uygun bir yaklaşımdır. Bu çalışma, nöbetleri tespit etmek ve tahmin etmek için iki ayrı ancak uyumlu çerçeve sunar. İlk çerçeve, birkaç sınıflandırıcı ile nöbet aktivitesini tespit etmek için Hilbert titreşim ayrışması ile ayrıştırılan EEG sinyallerinin özellik çıkarılması ve sınıflandırılmasından oluşur. Ayrıca, HVD yönteminin performansları ve diğer geleneksel ayrışma teknikleri karşılaştırılmaktadır. İkinci çerçeve, bir evirişimli sinir ağı ve bir post-proses algoritması kullanarak, preiktal aktiviteyi tespit etmek ve alarmları yükseltmek için sınıflandırma hedefini nöbet öncesi dönemlere kaydırarak ilkinin metodolojisini geliştirmektedir. Her iki çerçevenin bulguları, bağlamda makine öğrenme algoritmaları ile sinyal ayrışmasının ve özellik çıkarmanın uygunluğunu göstermektedir. İlk çerçeve, %100'e ulaşan sınıflandırma doğrulukları ile epileptik nöbetleri güvenilir bir şekilde tespit edeblmektedir. İkinci çerçeve, yaklaşık %90'lık bir ortalama duyarlılık ve 0.02/saate kadar düşen yanlış alarm oranları ile öngörme ve uyarma yapabilir, bu nedenle, HVD yönteminin makine öğrenme algoritmaları ile birlikte etkinliğini gösterirken, literatürde önerilen diğer çerçevelerden daha yüksek performans gösterir.

Özet (Çeviri)

Machine learning methods thrive in cases where there is a present but obscure relation between the inputs and outputs of a mechanism. Epilepsy, one of the most common brain disorders, is one such case. Leveraging the descriptive power signal processing techniques along with the predictive capabilities of machine learning algorithms is, therefore, a suitable approach to detect and predict epileptic seizures from EEG recordings. This work presents two separate but compatible frameworks in order to detect and predict seizures. The first framework consists of feature extraction and classification of EEG signals decomposed with the Hilbert vibration decomposition in order to detect seizure activity with several classifiers. Also, the performances of the HVD method and other conventional decomposition techniques are compared. The second framework builds upon the methodology of the first one by shifting the classification target to pre-seizure periods to detect preictal activity and raise alarms using a convolutional neural network and a novel post-processing algorithm. The findings of both frameworks indicate the suitability of signal decomposition and feature extraction with machine learning algorithms in the context. The first framework can reliably detect epileptic seizures with classification accuracies reaching 100%. The second framework is able to predict and alert, with a mean sensitivity of approximately 90% and false alarm rates as low as 0.02/h, therefore outperforming other frameworks proposed in the literature, while demonstrating the effectiveness of the HVD method along with machine learning algorithms.

Benzer Tezler

  1. Lifelong learning for auditory scene analysis

    İşitsel sahne analizi için hayat boyu öğrenme

    BARIŞ BAYRAM

    Doktora

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÖKHAN İNCE

  2. Klasik Türk müziği makamlarının sınıflandırılması ve tespiti

    Classification and detection of classic Turkish music maqams

    MERT KAYIŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiGazi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. FIRAT HARDALAÇ

  3. High impedance fault detection in medium voltage distribution systems using wavelet transform

    Dalgacık dönüşümü kullanılarak orta gerilim dağıtım sistemlerinde yüksek empedanslı arıza tespiti

    BARAA MAKKAWI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖMER USTA

  4. Panoramik görüntüler üzerinden su altı hedef tespiti: DBSCAN ve derin öğrenme ağları ile bütünleşik bir yaklaşım

    Underwater target detection via panoramic images: An integrated approach with DBSCAN and deep learning networks

    FATMA KÜBRA AKIN KÜÇÜK

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Savunma ve Savunma Teknolojileriİstanbul Teknik Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    PROF. DR. İBRAHİM ÖZKOL

  5. Enhancing human resource decision making with image-based OSMI data analysis: leveraging PIX2PIX for accurate workplace mental health insights

    İş yeri mental sağlık incelemeleri için PIX2PIX kullanarak, görüntü tabanlı OSMI veri analiziyle insan kaynakları karar süreçlerini geliştirme

    FARIBA FARID

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. NİZAMETTİN BAYYURT