Uzaktan algılama verilerinin derin öğrenme ile sınıflandırılması
Classification of remote sensing data with deep learning
- Tez No: 646792
- Danışmanlar: DOÇ. DR. MURAT UYSAL
- Tez Türü: Yüksek Lisans
- Konular: Jeodezi ve Fotogrametri, Geodesy and Photogrammetry
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: Afyon Kocatepe Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Harita Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 68
Özet
Bu araştırmada, uzaktan algılama platformları vasıtasıyla elde edilen görüntülerden kentsel nesnelerin otomatik olarak sınıflandırılması sorunu için Derin Öğrenme ağları önerilmiş ve önerilen ağlar kendi aralarında doğruluk, zaman kullanımı ve ağ karmaşıklığı gibi konularda karşılaştırılmışlardır. Günümüzde anlamsal bölütleme için geliştirilmiş Derin Öğrenme mimarilerinin, uzaktan algılanmış görüntülerde kentsel nesnelerin otomatik sınıflandırılmasında etkili olacağı düşüncesi ile UNet, SegNet ve PSPNet gibi anlamsal bölütlemede kendini kanıtlamış mimariler kullanılmıştır. Sınıflandırma için kullanılan görüntüler Uluslararası Fotogrametri ve Uzaktan Algılama Birliği (UFUAB) kullanıma sunduğu Vaihingen ve Potsdam verileridir. Vaihingen veri setinin eğitim ve test kısmında ücretsiz bulut sistemi olan Google Colab kullanılmış ve bu tür ağların eğitiminde maliyetin düşürülmesi için büyük bir alternatif sunulmuştur. Potsdam veri setinin eğitim ve test aşamasındaysa bir iş istasyonu kullanılmıştır. Yapılan çalışmadaki tüm kodlar Python yazılım dili kullanılarak yazılmıştır. Çalışmadan elde edilen sonuçlara bakıldığı zaman; her iki veri seti içinde genel olarak SegNet daha başarılı performans göstermiştir. UNet' tende SegNet' e yakın sonuçlar elde edilmiştir. Ancak PSPNet diğer iki mimariye göre daha kaba görünmektedir.
Özet (Çeviri)
In this research, Deep Learning networks were proposed for the problem of automatic classification of urban objects from images obtained through remote sensing platforms, and the proposed networks were compared among themselves on issues such as accuracy, time use and network complexity. Today, proven architectures have been used in semantic segmentation such as UNet, SegNet and PSPNet with the thought that Deep Learning architectures developed for semantic segmentation will be effective in automatic classification of urban objects in remote sensed images. The images used for classification are Vaihingen and Potsdam data made available by the International Society for Photogrammetry and Remote Sensing (ISPRS). The free cloud system, Google Colab, has been used in the training and testing part of the Vaihingen dataset, and a great alternative has been offered to reduce costs in the training of such networks. A workstation was used during the training and testing phase of the Potsdam dataset. All the codes in the study were written using the Python software language. When the results obtained from the study are examined; SegNet performed more successfully in both data sets. Results similar to SegNet were obtained from UNet. However, PSPNet appears to be more rude than the other two architectures.
Benzer Tezler
- Explainable deep learning classification of tree species with very high resolution VHRTreeSpecies dataset
Açıklanabilir derin öğrenme yöntemleri ile çok yüksek çözünürlüklü VHRTreeSpecies veri seti kullanılarak ağaç türlerinin sınıflandırılması
ŞULE NUR TOPGÜL
Yüksek Lisans
İngilizce
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. ELİF SERTEL
- Derin öğrenme ve makine öğrenmesi ile uydu görüntülerinin sınıflandırılması
Classification of satellite images with deep learning and machine learning
CANBERK AYDEMİR
Yüksek Lisans
Türkçe
2022
Elektrik ve Elektronik MühendisliğiBaşkent ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SELDA GÜNEY
- Hava lidar verilerinin yapa zeka yöntemleri kullanılarak sınıflandırılması ve filtrelenmesi
Classification and filtering of airborne lidar data by using artificial intelligence methods
BURCU BAYASLI
Yüksek Lisans
Türkçe
2021
Jeodezi ve FotogrametriYıldız Teknik ÜniversitesiHarita Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ALPER ŞEN
- Land cover segmentation of very high-resolution remotely sensed data using CNN and transformer models
Transformer ve CNN modelleri kullanarak çok yüksek çözünürlüklü uzaktan algılama görüntülerinin arazi örtüsü segmentasyonu
CENGİZ AVCI
Yüksek Lisans
İngilizce
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiUydu Haberleşmesi ve Uzaktan Algılama Ana Bilim Dalı
PROF. DR. ELİF SERTEL
- Identification of tea plantation areas using Google cloud based random forest and deep learning
Google bulut servise dayalı rastgele orman ve derin öğrenme ile çay tarım alanlarının belirlenmesi
BERKAY ÖZEN
Yüksek Lisans
İngilizce
2020
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
DOÇ. DR. ESRA ERTEN