Geri Dön

Yapay öğrenme ile yazılım test eforu kestirimi

Software testing effort estimation with machine learning

  1. Tez No: 650231
  2. Yazar: ÖZGENİL MERİÇ
  3. Danışmanlar: DOÇ. DR. AHMET MURAT ÖZBAYOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Savunma ve Savunma Teknolojileri, Computer Engineering and Computer Science and Control, Defense and Defense Technologies
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 81

Özet

Yazılım Test dünyasındaki en önemli problemlerden bir tanesi yazılım test planları oluşturulurken test eforunun net bir şekilde belirlenememesidir. Projelerdeki yazılım test işçiliği için ayırılması gereken süre ve kaynak ihtiyacının doğru bir şekilde belirlenebilmesi, proje takvimlerinin oluşturulabilmesi ve kaynakların verimli bir şekilde kullanılabilmesi için önem arz etmektedir. Bu çalışmada yapay öğrenme algoritmaları kullanarak yazılım test eforu tahmini üzerine çeşitli yapay öğrenme modelleri önerilmiştir. Önerilen metot ile ASELSAN A.Ş. bünyesinde geliştirilen, Komuta Kontrol Kullanıcı Arayüzü Yazılımları ve Gömülü ve Gerçek Zamanlı Yazılımları doğrulamak için harcanan test eforu analiz edilerek, ileride yapılması planlanan test aktiviteleri için etkin bir test eforu tahmini yapılmaktadır. Yapılan test eforu tahminleri, şu anda kullanılmakta olan geleneksel yöntemler ile karşılaştırılarak önerilen yöntemin başarı değerlendirmesi de yapılmıştır.

Özet (Çeviri)

One of the main headlines of software test literature is the problem of not having a sound estimation of software test effort while scheduling a plan for the whole software development. The software test process time in software projects shouldbe estimated timely in order to gather the required resources beforehand. In this work, using Machine Learning algorithms, we propose a new method of software effort estimation. Using the past experiences of software test efforts processed in ASELSAN in the areas of command center graphical user interfaces, embedded and real-time software test developments, we strive for better estimations. The new estimations are evaluated in comparison with the traditional methods.

Benzer Tezler

  1. BMI prediction from face images

    Yüz görüntülerinden vücut kitle indeksi tahmini

    GÜLPINAR BÖLÜKBAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MUSTAFA ERSEL KAMAŞAK

  2. Modeling of the marine diesel engines with comparative machine learning methodologies

    Gemi dizel motorların karşılaştırmalı makine öğrenmesi yöntemleri ile modellenmesi

    MEHMET İLTER ÖZMEN

    Doktora

    İngilizce

    İngilizce

    2024

    Gemi Mühendisliğiİstanbul Teknik Üniversitesi

    Gemi İnşaatı ve Gemi Makineleri Mühendisliği Ana Bilim Dalı

    PROF. DR. OSMAN AZMİ ÖZSOYSAL

  3. Acil tıp asistanlarında kısa eğitim modeli ile aort ve mitral kapak yetmezliğin değerlendirilmesi

    Evaluation of aortic and mitral valve failure with A brief training model in emergency medicine assistants

    GÖRKEM KARAHAN

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2022

    Sağlık Eğitimiİzmir Katip Çelebi Üniversitesi

    Acil Tıp Ana Bilim Dalı

    DOÇ. DR. ZEYNEP KARAKAYA

    DR. ÖĞR. ÜYESİ ADNAN YAMANOĞLU

  4. Random capsule network (CAPSNET) forest model for imbalanced malware type classification task

    Dengesiz sınıf dağılımına sahip kötü amaçlı yazılım sınıflandırma görevi ̇için rassal kapsül ağı (CAPSNET) orman modeli

    AYKUT ÇAYIR

    Doktora

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKadir Has Üniversitesi

    Yönetim Bilişim Sistemleri Ana Bilim Dalı

    PROF. DR. HASAN DAĞ

  5. UR5 işbirlikçi robotla farklı geometrik şekillere sahip nesnelerin sınıflandırılması

    Classifying components with different geometric shapes by UR5 cobot

    AHMET ARAS AL

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiHacettepe Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ŞÖLEN KUMBAY YILDIZ