Geri Dön

Evrişimsel sinir ağları ile toraks BT görüntülerinden akciğer kanseri tespiti

Detection of lung cancer on thorax CT images with convolutional neural networks

  1. Tez No: 652089
  2. Yazar: AYMEN SALMAN DAWOOD EZZAT
  3. Danışmanlar: DOÇ. DR. RAHİME CEYLAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: Selçuk Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 79

Özet

Son yıllarda akciğer kanseri tümörleri, dünyadaki nüfus sayısında ciddi bir artış göstermiştir. Bilgisayarlı Tomografi (BT), akciğer kanseri teşhisi için kullanılan önemli bir medikal görüntüleme tekniğidir. Bununla birlikte, hekimlerin BT görüntülerinden tümörü iyi huylu veya kötü huylu olarak belirlemesi zordur. Bu tezde, iyi huylu ve kötü huylu tümörlerin sınıflandırılması için Evrişimsel Sinir Ağı (ESA) tabanlı mimariler kullanılmıştır. Amaç, tümörleri iyi huylu ve kötü huylu olarak sınıflandırmak için ESA'nın altı modelini kullanarak daha yüksek verimlilik ve doğruluk elde etmektir. Ayrıca, çalışmada görüntü üzerinde ön işleme yapmanın sonuca etkisi de incelenmiştir. Sonuçlar, orijinal veriler kullanıldığında, VGG16 mimarisinin %99,8 doğruluk ile akciğer kanseri tümör tipinin tahmininde en iyi mimari olduğunu ortaya çıkarmıştır. Bununla beraber segmentlere ayrılmış veriler kullanıldığında %99,4 doğrulukla en iyi performansı ResNet50 göstermiştir.

Özet (Çeviri)

In the recent decades, the number of lung cancer cases in the world has dramatically increased. Computed Tomography (CT) is used as a superior tool for lung cancer diagnosis. However, it is difficult for physicians to determine the tumor from CT images whether benignant or malignant. In this thesis, different Convolutional Neural Network-based architectures were used for the classification of benignant and malignant tumors. The objectives are to obtain higher efficiency and accuracy using CNN's six models to classify tumors as benignant and malignant. In addition, the effect of pre-processing made on image is investigated on these model's performance. The results revealed that using the original data, the VGG16 architecture was the best architecture for predicting lung cancer tumor type with 99.8% accuracy. However, when segmented data were used, ResNet50 showed the best performance with 99.4% accuracy.

Benzer Tezler

  1. Prediction of COVID 19 disease using chest X-ray images based on deep learning

    Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini

    ISMAEL ABDULLAH MOHAMMED AL-RAWE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ADEM TEKEREK

  2. Evrişimsel sinir ağları ile delikli bileşenlerde lehim kalitesinin sınıflandırılması

    Classification of solder quality in through hole devices with convolutional neural networks

    NESLİHAN SARIGÜL

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. TÜLAY YILDIRIM

  3. Evrişimsel sinir ağları ile ortam tarifleme

    Environment description with convolutional neural networks

    ANIL ÇETİNSOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MİNE ELİF KARSLIGİL YAVUZ

  4. Evrişimsel sinir ağları ile meme kanseri moleküler alt tip sınıflandırması

    Classification of breast cancer molecular subtypes using convolutional neural networks

    KADİR ÇIRAY

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAfyon Kocatepe Üniversitesi

    Bilgisayar Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AHMET HAŞİM YURTTAKAL

  5. Evrışımsel sınır ağları ıle meme kanserı hıstopatolojık görüntülerının sınıflandırılması

    Classification of breast cancer histopathological images with convolutional neural networks

    KEVIN KIAMBE ASSA

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AHMET BABALIK