Geri Dön

Use of optimization techniques for health prediction

Sağlık tahmininde optimizasyon tekniklerinin kullanılması

  1. Tez No: 654546
  2. Yazar: MUHAMMAD SUFYAN MALIK
  3. Danışmanlar: Prof. Dr. ALİ YAZICI, DR. ÖĞR. ÜYESİ MUHAMMAD UMER KHAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Makine Öğrenmesi, Optimizasyon Teknikleri, Doğrusal Programlama, En Küçük Kareler Yöntemi, İkinci Derece Programlama, Lagrange Yöntemi, Şeker hastalığı, Machine learning, Optimization Techniques, Linear Programming, Least Square, Quadratic Programming, Lagrangian Method, Diabetes Mellitus
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 77

Özet

Günümüz dünyasında modern teknolojinin kullanımı tıp bilimi alanında birçok gelişme sağlamıştır. Yine de, tüm ilerlemelerle birlikte, çoğu hastalığın tanı ve tedavisi zor bir görev olarak kabul edilmektedir. Diyabet rahatsızlığı, erken evrelerinde tanıyı araştırmak yerine semptomlarla mücadele için daha fazla çalışılmıştır. İnsülin ve insülin emisyon eksikliğine direnç kombinasyonu tip-2 diyabet üretir. Tip-2 yüksek nüfuzludur ve hala artmaktadır. Bununla birlikte, DMT2'nin tanımlanması bir ikilemdir. DMT2 erken bir aşamada tanımlanabilirse, daha az önleyici tedbirler gerekli olacaktır ve kişi yine de sağlıklı ve kaygısız bir yaşam sürdürebilir. Veri madenciliği teknikleri kullanan birçok sağlık kehanet sistemi yerleşik sağlık segmentleri vardır. Optimizasyon teknikleri de daha kesin ve verimli sonuçlar sağlayabilir. Bu çalışmada, sınıflandırma doğruluğunu ve SVM, DT, LR gibi mevcut sınıflandırıcılar arasındaki karşılaştırmayı bulmak için dışbükey optimizasyonda En Küçük kare, Karesel programlama ve Lagrangian Yöntemi kullanılmıştır. Bu araştırma, optimizasyon tekniklerinin sağlık hastalığını öngörmek veya teşhis etmek için kullanılabileceğini ve diğer sınıflandırıcılara göre daha iyi sonuçlar verebileceğini göstermektedir.

Özet (Çeviri)

In today's world, the usage of modern technology has brought many advancements in the field of medical science. Still, with all the advancements, the diagnosis and treatment of most diseases are considered a challenging task. Diabetes ailment has been studied more for tackling the symptoms rather than investigating the diagnosis in its early stages. The combination of resistance to insulin and insulin emission deficiency produces type-2 diabetes. Diabetes Mellitus Type-2 is high penetrance and still increasing around. However, the identification of DMT2 is a dilemma. If the DMT2 can be identified at an early stage, fewer preventive measures would be required, and the person can still lead a healthy and carefree life. There exist many health prediction systems in health sectors using data mining techniques. Optimization techniques are capable of providing more precise and efficient results as well. In this research study, Least squares, Quadratic programming, and Lagrangian Method are used with convex optimization to find the classification accuracy and the comparison between existing classifiers such as SVM, DT, LR, and so forth. This research demonstrates that optimization techniques can be used to envisage or diagnose health disease and can provide better results compared to other classifiers.

Benzer Tezler

  1. Hibrit ve kaotik metasezgisel arama algoritmaları kullanarak model öngörülü kontrol yapıları tasarımı

    Hybrid and chaotic metaheuristic algorithms and design of model predictive control structures

    MURAT ERHAN ÇİMEN

    Doktora

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Uygulamalı Bilimler Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ FUAT BOZ

  2. Yapay zeka teknikleri ile dizel motor performansının modellenmesi ve yakıt optimizasyonu

    Modelling of diesel engine performance and fuel optimisation by artificial intelligence techniques

    KEMAL TÜTÜNCÜ

    Doktora

    Türkçe

    Türkçe

    2009

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. NOVRUZ ALLAHVERDİ

  3. Yapısal ses kaynaklarının konumunun akustik emisyon yöntemi kullanılarak belirlenmesi

    Localization of structural noise sources using the acoustic emission method

    TOLGA MERİÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. HALUK EROL

  4. Li-iyon batarya modelinin en uygunlaştırılması ve batarya bozunumunun incelenmesine katkılar

    Contributions to optimization of Li-ion battery models and analysis of battery degradation

    HAKAN İNCESU

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DERYA AHMET KOCABAŞ

  5. Heart disease prediction project

    Kalp hastalıklarını önleme projesi

    RUBA AYAD YOUSIF AL-SAMMARRAIE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilişim Teknolojileri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HAKAN KOYUNCU